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ABSTRACT

Control-flow leakage (CFL) attacks enable an attacker to expose

control-flow decisions of a victim program via side-channel obser-

vations. Linearization (i.e., elimination) of secret-dependent control

flow is the main countermeasure against these attacks, yet it comes

at a non-negligible cost. Conversely, balancing secret-dependent

branches often incurs a smaller overhead, but is notoriously inse-

cure on high-end processors. Hence, linearization has been widely

believed to be the only effective countermeasure against CFL at-

tacks. In this paper, we challenge this belief and investigate an

unexplored alternative: how to securely balance secret-dependent

branches on higher-end processors?

We propose Libra, a generic and principled hardware-software

codesign to efficiently address CFL on high-end processors. We

perform a systematic classification of hardware primitives leaking

control flow from the literature, and provide guidelines to handle

them with our design. Importantly, Libra enables secure control-

flow balancing without the need to disable performance-critical

hardware such as the instruction cache and the prefetcher. We for-

malize the semantics of Libra and propose a code transformation

algorithm for securing programs, which we prove correct and se-

cure. Finally, we implement and evaluate Libra on an out-of-order

RISC-V processor, showing performance overhead on par with inse-

cure balanced code, and outperforming state-of-the-art linearized

code by 19.3%.

CCS CONCEPTS

• Security and privacy→ Security in hardware; Formal secu-

rity models; Information flow control.
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1 INTRODUCTION

In recent years, software-based microarchitectural attacks [34, 60]

have emerged as a critical security threat. When multiple stake-

holders run code on the same computing device, this type of side-

channel attack makes it possible for an attacker to infer program

secrets just by monitoring from software how a victim uses shared

hardware such as the cache, branch predictor, or prefetcher.

Of special interest to this work are so-called control-flow leak-
age (CFL) attacks [17, 24, 55, 66, 76, 86, 101] whereby an attacker

tries to expose the program counter (PC) trace of a victim program

via side-channel observations with the aim of revealing the outcome

of conditional control-flow decisions. The program’s conditional

control flow exposes the outcome of the condition that determines

the control flow, which poses a security threat if that condition de-

pends on secret information. In the presence of a microarchitectural

attacker, a program’s control flow can, in general, be observed in the

microarchitectural state of shared hardware or through contention.

A possible software countermeasure against CFL attacks is control-
flow balancing [4, 18, 28, 53, 75, 94], a program transformation

which aims to make the execution of all possible targets of a control-

transfer instruction appear the same to an attacker. So far, control-

flow balancing has been shown to be secure only for a class of

low-power embedded processors [18, 94]. This is because modern

superscalar processors feature critical performance-enhancing hard-

ware that maintains state as a function of the PC, thus leaking the

PC in an unbalanceable way when this hardware is shared between

different security domains. For this reason, it is widely accepted

that, to counter CFL attacks on higher-end processors, programs

must be PC-secure [66], i.e., their PC should be independent from

secret information. PC-secure programs are created by avoiding

secret-dependent control flow and the techniques for doing so are

well-documented in the literature [19, 66, 78, 87, 95].

Unfortunately, this advice has not been questioned much. Over

the years, it has been evolving into a dogma and it has become

https://orcid.org/0000-0002-0165-7915
https://orcid.org/0000-0002-8641-7549
https://orcid.org/0000-0002-2772-3722
https://orcid.org/0000-0001-5438-153X
https://doi.org/10.1145/3658644.3690319
https://doi.org/10.1145/3658644.3690319


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Hans Winderix, Marton Bognar, Lesly-Ann Daniel, and Frank Piessens

an established practice to hardcode it in constant-time [8] source
code, preventing the adoption of more relaxed policies (for simpler

architectures or for weaker attacker models). Furthermore, this

trend creates the fallacy that secret-dependent control flow is in-

herently insecure and, consequently, it discourages the search for

novel mechanisms to securely execute PC-insecure programs on

higher-end processors.

On the other hand, there still exists a strong desire to keep the

secret-dependent control flow for performance reasons, even on

high-end processors. Vendors of cryptographic libraries, for in-

stance, sometimes take the risk and do balance secret-dependent

branches [101] instead of eliminating them. As another example,

numerous offensive research papers have been published that de-

velop new CFL attacks, accompanied by ad-hoc defenses, which

are later found to be vulnerable by other offensive research, a trend

that has been recently described as the CFL arms race [101].

Our Proposal. In this work, we challenge the widely-held belief

that secret-dependent control flow is inherently insecure on high-

end processors and propose a well-founded hardware-software

codesign for secure and efficient balanced execution. In contrast

to prior works that target a single vulnerability and propose ad-

hoc, incremental defenses, we propose a principled solution that

addresses the CFL problem in a generic way with the goal of ending

the CFL arms race. Also in contrast to prior works, we do not

assume a simple processor pipeline and scheduling but support

modern out-of-order processor designs.

We conduct a rigorous analysis of how hardware optimizations

leak a program’s control flow. A key finding is that hardware

optimizations can be partitioned into two categories; those that

yield balanceable observations and those that yield unbalanceable
observations. Balanceable observations can be securely balanced

by software-only approaches. Unbalanceable observations require

hardware support. Based on the findings of our analysis, we pro-

pose Libra, a hardware-software security contract that lays the

principled foundation for secure balanced execution. We introduce

a novel memory layout, called folded layout, and an algorithm for

folding balanced code regions, which makes it possible to keep

enabled performance-critical hardware optimizations without com-

promising security. Additionally, we propose an ISA extension for

executing folded regions.

In a nutshell, we make the following contributions:

• A novel hardware-software contract, called Libra, for secure

and efficient balanced execution (Section 4).

• A formalization of the ISA-level semantics of Libra and se-

curity and correctness proofs of our folding algorithm (Sec-

tion 5).

• A characterization of hardware optimizations regarding how

they leak a program’s control flow (Section 6).

• Recommendations for hardware designers wishing to adopt

Libra to their designs (Section 6).

• An implementation of Libra on an out-of-order RISC-V core

(Section 7.1).

• An experimental evaluation showing that balanced execution

is secure and efficient at a low hardware cost (Section 7.2).

En: br a0,t,f
t: br a1,tt,tf

tt: add s1,s2,s3
j Ex

tf: add s2,s3,s4
j Ex

f: sub s1,s2,s3
j Ex

Ex: [...]

𝐵En

𝐵t 𝐵f

𝐵tt 𝐵tf

𝐵Ex

Figure 1: A program and its CFG.

Additional material. Our RISC-V implementation and evaluation

are archived on Zenodo [91] and available on GitHub: https://github.

com/proteus-core/libra. The proofs of Section 5 are available in the

companion technical report [92].

2 TERMINOLOGY AND BACKGROUND

2.1 Terminology

We first define relevant terminology from the fields of graph theory

and compiler construction and then introduce some new vocabulary

(marked with ∗).

Definition 1 (Basic block). A basic block is a straight-line instruc-

tion sequence always entered at the beginning and exited at the

end.

Definition 2 (Control-flow graph). A control-flow graph (CFG)

is a directed graph that represents all the paths that might be tra-

versed through a program during its execution. The nodes of a CFG

represent basic blocks, the edges represent control-flow transfers.

Without loss of generality, we assume that a CFG has a unique

entry and a unique exit block. We also assume that the last in-

struction in a basic block is a control-transfer instruction, which

designates the possible successor blocks.We refer to this instruction

as the terminating instruction of the basic block. Figure 1 contains

an illustration of a CFG with 𝐵En the entry basic block and 𝐵Ex the

exit basic block.

Definition 3 (Distance). The distance between two basic blocks in

a CFG is the number of edges in a shortest path connecting them.

In Figure 1, the distance between the basic blocks 𝐵En and 𝐵Ex
is 2 (𝐵En → 𝐵f → 𝐵Ex). The distance between two instructions is

defined similarly by considering individual instructions as basic

blocks.

Definition 4 (Postdominance). A basic block 𝑌 postdominates a

basic block 𝑋 (i.e., 𝑌 is a postdominator of 𝑋 ) if all paths from 𝑋 to

the exit block go through 𝑌 .

The closest postdominator of a basic block is called its immediate
postdominator. In Figure 1, basic block 𝐵Ex postdominates basic

block 𝐵En. It is also the immediate postdominator of 𝐵En.

Definition 5 (Level structure). The level structure of a CFG is a

partition of the basic blocks into subsets (levels) that have the same

distance from the entry basic block.

The level structure of the CFG in Figure 1 consists of three levels:

𝐿0 = {𝐵En} , 𝐿1 = {𝐵t, 𝐵f} , 𝐿2 = {𝐵tt, 𝐵tf, 𝐵Ex}.

https://github.com/proteus-core/libra
https://github.com/proteus-core/libra
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Definition 6 (∗Level slice). The set of equidistant instructions for

a distance 𝛿 with respect to basic block 𝐵 forms the level slice (or

simply slice) determined by the tuple (𝐵, 𝛿)

In Figure 1, the slice of distance 0 is {br a0,t,f} and the slice of

distance 1 is {br a1,tt,tf; sub s1,s2,s3} (both relative to 𝐵En).

Definition 7 (∗Secret-dependent region). The set of basic blocks

between a secret-dependent control-transfer instruction 𝑖𝑛𝑠𝑡 and

its immediate postdominator form the secret-dependent region

determined by 𝑖𝑛𝑠𝑡 .

We refer to the basic block containing the secret-dependent

control-transfer instruction as the entry block of the region, and

to its immediate postdominator as the exit block of the region.

In Figure 1, if a1 is secret (line t), then {𝐵tt, 𝐵tf} is the secret-

dependent region determined by the instruction on line t. The

entry block of the region is 𝐵t, the exit block 𝐵Ex. Similar to the

level structure of a CFG, we define the level structure of a secret-
dependent region as the partition of its basic blocks into subsets

(levels) that have the same distance from the region’s entry block.

2.2 The Control-Flow Leakage Problem

2.2.1 Control-Flow Leakage Attacks. CFL attacks are a type of mi-

croarchitectural attack whereby an attacker tries to learn the out-

come of a secret-dependent branch by exposing the control flow

via microarchitectural side channels. Consider the program in List-

ing 1a. When the branch on line 1 evaluates to true, the instructions

on lines 2-3 are executed and the program exits. When the branch

evaluates to false, the instruction on line 4 is executed and the

program exits. An attacker that is able to observe the program’s

execution time will be able to distinguish the two executions, and

hence learn if secret evaluates to true or false.

Listing 1: Code vulnerable to CFL attacks (Listing 1a) and its

balanced version (Listing 1b).

1 br secret ,t,f
2 t: add s1,s2,s3
3 j Ex
4 f: add s2,s3,s4
5

6 Ex: [...]

(a)

1 br secret ,t,f
2 t: add s1,s2,s3
3 j Ex
4 f: add s2,s3,s4
5 j Ex
6 Ex: [...]

(b)

Besides this start-to-end timing difference, interrupt latency [86],

data cache contention [69], structural dependencies [7] or data de-

pendencies stalling the pipeline are other examples ofmicroarchitec-

tural events that can be monitored by an attacker to leak the control

flow. Consider Listing 1a again and assume that the addresses of the

add instructions (lines 2 and 4) map to different instruction cache

lines. Monitoring which cache line has been touched (for instance

with the Flush+Reload attack [98]) will reveal the control flow.

Two common software countermeasures against CFL attacks are

control-flow balancing and control-flow linearization. The former

technique keeps the secret-dependent control flow intact while the

latter eliminates it completely.

2.2.2 Control-Flow Balancing. Control-flow balancing is based on

the idea that if the two sides of a secret-dependent branch induce

exactly the same attacker-observable behavior, then executing the

code does not reveal via side channels which side of the branch

has been executed. Listing 1b gives the balanced form of Listing 1a.

The add instruction on line 2 is balanced with the add instruction

on line 4 and a jump instruction is added to the f path on line 5 to

balance it with the jump on line 3 in the t path.

Recent work [18, 94] has demonstrated the security (and effi-

ciency) of control-flow balancing for small, embedded processors

with deterministic timing behavior. The authors propose a method-

ology consisting of three steps. First, by profiling the microarchi-

tecture, the instruction set is classified into a number of leakage
classes such that executing instructions from the same leakage class

induces the same side-channel observations. Second, a dummy

(no-op) instruction is composed for every leakage class. Lastly,

the secret-dependent branches are algorithmically balanced [94]

with respect to the leakage classification, and by inserting dummy

instructions when necessary. This approach ensures that the dy-

namic instruction trace of balanced code always produces the same

sequence of leakage classes.

Although control-flow balancing counters attacks exploiting mi-

croarchitectural optimizations on low-end devices [64, 86], higher-

end devices (the target of our work) typically feature optimizations

yielding observations that are unbalanceable in software alone. Yet,

for performance reasons, balanced control flow is sometimes found

in security-critical libraries targeting these devices [64, 101]. Thus,

how tomake balanced execution secure on these higher-end devices

remains an important research question.

2.2.3 Control-Flow Linearization. Control-flow linearization is a

key principle of the widely-established constant-time programming

discipline [8]. By eliminating secret-dependent branches, control-

flow linearization ensures that the PC does not get tainted (i.e.,

that the PC trace is independent of secrets). Several linearization

techniques have been proposed in the literature [19, 66, 78, 83, 87,

95]. Listing 2 contains the linearized form of the running example

from Listing 1a, based on a state-of-the-art method that was first

proposed by Molnar et al. [66]. Compared with the balanced form

from Listing 1b, the linearized form comes with a higher cost due

to the use of additional instructions and registers.

Listing 2: Linearized formof the vulnerable code in Listing 1a.

1 seqz t1,secret
2

3 addi t1,t1 ,-1 # t1 = true mask (in {0xffff , 0x0000})
4 not t2,t1 # t2 = false mask (in {0xffff , 0x0000})
5 and t3,s1,t1 # start of else
6 add s1,s2,s3
7 and s1,s1,t2
8 or s1,s1,t3 # start of then
9 and t3,s2,t2
10 add s2,s3,s4
11 and s2,s3,t1
12 or s2,s2,t3

2.2.4 This paper. The goal of this work is to make sure that ex-

ecuting balanced code (which contains secret-dependent control

flow) on high-end processors does not leak more information than

executing the equivalent linearized code (which does not contain
secret-dependent control flow). We demonstrate that, with min-

imal hardware support, it is possible to securely balance secret-

dependent control flow on higher-end platforms, without disabling
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performance-critical hardware resources that are shared between

different stakeholders.

3 THREAT MODEL

We consider an adversary with the goal to infer secrets (e.g., cryp-

tographic keys) by learning the secret-dependent control flow of a

victim application. We consider an adversary with the same capabil-

ities as an adversary under the classic constant-time threat model,

and thus assume that applications are hardened against transient

execution attacks [21]. More specifically, an adversary with the ca-

pabilities of this threat model is able to run arbitrary code alongside

an architecturally isolated victim (e.g., via process isolation) on the

same machine and it shares hardware resources, such as the branch

predictor, cache hierarchy and execution units with the victim. This

setting enables the adversary to precisely observe the execution

time of the victim, and how it uses the shared resources. If these

observations depend on the secret control flow, the adversary is

able to learn something about the secret.

We consider software-based timing channels, i.e., the adversary

monitors the microarchitectural resource usage via timers from

software [34, 60]. Side channels that require physical access and

physical equipment to measure quantities such as power consump-

tion [52] or EM emissions [77] are out of scope for this paper.

Similarly, other types of software-based side-channel attacks, such

as software-based fault attacks [68] and software-based power at-

tacks [58] are out of scope and subject of orthogonal mitigations.

We make no further assumptions on the type of (software-based)

microarchitectural side-channels attacks that can be mounted by

the adversary, ranging from classic cache attacks [69] tomore recent

contention-based attacks [7].

4 OVERVIEW OF LIBRA

A program’s control flow can leak through observations induced by

various microarchitectural optimizations. Some of these observa-

tions, such as instruction latency, are independent of the value of the

PC. We refer to optimizations yielding this type of observation as

sources of balanceable leakage as their observations can be balanced

by software. However, some performance-critical optimizations

commonly found in modern hardware (e.g., the instruction cache

and the instruction prefetcher) yield observations that are depen-

dent on the value of the PC. They inevitably leak the control flow.

We refer to these optimizations as sources of unbalanceable leakage
as they cannot be dealt with by software alone. In Section 6, we

study this distinction further and provide a comprehensive charac-

terization of hardware optimizations regarding how they leak the

control flow.

Existing control-flow balancing solutions are ineffective against

unbalanceable leakage. It is the goal of Libra to address this gap via

a novel hardware-software security contract for secure and efficient

balanced execution. On the one hand, the software is responsible

for balancing secret-dependent control flow under a weak observer
mode (accounting for the balanceable leakage) in which the PC

does not leak. On the other hand, the hardware provides support to

deal with the sources of unbalanceable leakage to ensure that the

program remains secure in a strong observer mode, representative
of our threat model (Section 3) for high-end processors.

4.1 Leakage Contract

Libra requires the hardware to augment the ISA with a leakage
contract that provides sufficient information on how to balance

the control flow. Software, such as a compiler, can then rely on

this contract 1) to securely balance secret-dependent control flow

(making control-flow balancing a principled code transformation) or

2) to verify that secret-dependent control flow is securely balanced.

This stands in contrast to prior works [4, 18, 28, 53, 75, 94], where

it is the responsibility of the software to empirically figure out how
to balance corresponding instructions.

The Libra leakage contract classifies an instruction set into two

dimensions. First, it partitions instructions into leakage classes [18,
94] such that instructions from the same leakage class yield iden-

tical side-channel observations. Importantly, any instruction can

be used to balance any other instruction from the same leakage

class. For every leakage class, the contract additionally designates a

canonical dummy instruction, which does not produce architectural

effects (e.g., mv x1, x1). Finally, the hardware provides a blocklist

of instructions that are not supported in balanced regions. Block-

listed instructions have to be rewritten in terms of non-blocklisted

instructions before performing control-flow balancing.

Second, the leakage contract partitions the instruction set into

safe and unsafe instructions [100]. Safe instructions are instructions
whose timing and shared microarchitectural resource usage are

independent of the values of their operands. For instance, an add

instruction is typically implemented in a safe way, while a load

typically exposes the value of the address operand on systems

with a data cache (making it an unsafe instruction). It is insecure
to pass secrets to unsafe instructions but it is secure to use unsafe

instructions in balanced regions if it can be proven that the operands

of any two equidistant unsafe instructions are the same for all

possible executions. For instance, the code if (secret) load x0 a

else load x1 a is secure as the resulting observation is independent

of secret (under the assumption that the load is only unsafe in its

address operand).

4.2 ISA Extension

The goal of Libra is to securely execute balanced code regions on

high-end CPUs without disabling performance-critical optimiza-

tions. In particular, Libra aims at keeping all modern hardware

optimizations fully enabled when executing security-insensitive

code (i.e., the common case), and keeping as many optimizations as
possible in secret-dependent regions.

To this end, Libra proposes an ISA extension introducing two

main novel features:

• A novel memory layout for balanced code, termed folded
layout, which interleaves the instructions from balanced

regions by placing the level slices sequentially in memory.

• A new instruction, the level-offset branch (lo.br), which
informs the CPU how to navigate a folded region. Addi-

tionally, it signals to the CPU that it is about to execute a

secret-dependent region such that it can adapt the behavior

of some optimizations.

Importantly, even though folding sequentially lays out instruc-

tions of balanced regions in memory (reminiscent of linearization),

the original control flow of the program is preserved, i.e., only one
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side of a folded conditional branch is executed, as prescribed by the

original CFG (just like with standard code balancing).

The level-offset branch lo.br 𝑐, offt : offf : bbc specifies how

to navigate a folded region:

(1) The level offsets offt and offf indicate what instructions
of the next level to execute, depending on whether the con-

dition 𝑐 is true or false;

(2) The basic block count bbc indicates the number of basic

blocks of the next level (the slice size of the next level) and

is used to increment the PC by the correct value.

Listing 3 illustrates how to fold the balanced code from Listing 1b.

First, the two add and the two j instructions are sequentially placed

in memory. Second, the conditional branch is rewritten using a

lo.br with offt = 0, offf = 1 and bbc = 2. After the lo.br, the
CPU will execute the folded region slice by slice, incrementing the

PC by 2. If the condition is true, the first (offset offt) instruction of

each slice is executed, otherwise the second (offset offf) instruction
is executed. Finally, the terminating j instructions are replaced by

lo.br instructions to reset the level offset and bbc and resume

“normal” execution at the Ex label.

Listing 3: Folded form of the balanced code in Listing 1b.

lo.br secret ,0:1:2 # offT:offF:bbc
L1: add s1,s2 ,s3

add s2,s3,s4
lo.br zero ,0:0:1 # offT:offF:bbc
lo.br zero ,0:0:1 # offT:offF:bbc

Ex: [...]

How does Libra address unbalanceable leakage? The design of

Libra is tailored to address unbalanceable leakage in hardware

efficiently, i.e., by keeping essential hardware optimizations enabled.

Yet, to establish the security guarantees, Libra requires that the PC

does not leak at a finer granularity than a slice, possibly requiring

adaptations to the behavior of some optimizations.

Importantly, the folded memory layout is crucial to keep en-

abled performance-critical optimizations of modern hardware (e.g.,

the instruction cache) without, or with only minimal, adaptations.

By virtue of folding (which creates a linear memory layout), the

hardware can efficiently implement a data-oblivious instruction

memory access pattern by always prefetching all the slices in the

same order, effectively making it independent of the outcomes of

conditional branch(es).

While some sources of unbalanceable leakage do not require

hardwaremodifications, somewill, possibly degrading performance.

However, because the hardware is informed when it is executing

a folded region, these modifications can be limited to folded re-

gions only. For instance, some hardware structures, such as the

branch predictor, must be disabled for the lo.br instruction to

prevent control-flow exposure to an attacker sharing the branch

predictor. However, the linear layout of a folded region makes the

branch predictor unnecessary for lo.br instructions, because there
is no uncertainty (at slice granularity) what address the sequen-

tial prefetcher should fetch from, so it can fill the cache with the

instructions that are about to be fetched by the CPU.

In Section 6, we present, based on a rigorous study of the attack

literature, a characterization of the sources of unbalanceable leakage

(with folding in mind), and we provide guidelines about how to

handle them.

4.3 Advanced Features

4.3.1 Nested branches. When folding a regionwith a nested branch

(as in Listing 4a), the software must fold the level structure of the

entire outer region, as shown in Listing 4b. The slice size grows

with the level of nesting. In the example from Listing 4b, each slice

of the second level consists of four instructions. Recall that the

hardware has to make sure to fetch instructions without exposing

their offset within the current level. For instance, if a slice occupies

multiple cache lines, the hardware must ensure to always touch

all the cache lines in the same order, irrespective of the current

instruction’s offset.

Listing 4: Region with nested branches (Listing 4a) and its

folded version (Listing 4b).

br secret ,t,f
t: br c,tt,tf

tt: add r,r,4
j Ex

tf: add r,r,8
j Ex

f: br c,ft,ff
ft: sub r,r,4

j Ex
ff: sub r,r,8

j Ex
Ex: [...]

(a)

lo.br secret ,0:1:2
L1: lo.br c ,0:1:4

lo.br c ,2:3:4
L2: add r,r,4

add r,r,8
sub r,r,4
sub r,r,8
lo.br zero ,0:0:1
lo.br zero ,0:0:1
lo.br zero ,0:0:1
lo.br zero ,0:0:1

Ex: [...]

(b)

Note that when a nested branch does not depend on secret in-

formation (e.g., a loop with a constant trip count), it can be more

efficient to keep the branch instead of folding it. In that case, for

correctness, the software must ensure that the level offsets of the

target instructions are consistent regarding the offsets of the branch

instructions. Moreover, for security, the software must ensure that

the branch targets of the branches in the source slice all point to

targets in the same target slice.

4.3.2 Function calls. To support function calls in balanced code,

prior work on control-flow balancing [18, 94] proposed to create a

dummy function for each function called from a secret-dependent

region. A dummy function is mostly made up of dummy (no-op)

instructions designed to mirror the behavior of the real function.

These dummy instructions ensure that both the dummy and real

functions cause identical changes in the microarchitectural state.

As a result, an attacker cannot distinguish between the execution

of the dummy function and that of the real function. A call to a

function in a secret-dependent region can then be balanced with a

call to its dummy version. Libra supports this scheme, yet in order

not to expose the control flow on higher-end CPUs (e.g., via the

instruction cache), functions must be folded with their dummy

counterpart. Libra provides hardware support to efficiently invoke

a folded function and extends the ISA with a new instruction, the

level-offset call: lo.call 𝑏 ℓ . The instruction jumps to the folded

function and, according to the boolean immediate 𝑏, either executes

the real part or the dummy part of the folded function. Additionally,

the CPU must save/restore the Libra state (i.e., current offset and

bbc) of the caller upon calls/returns. Libra proposes a two-level
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hardware stack, used for storing and restoring the Libra state of the

caller. For non-leaf functions (i.e., to support more than one level

of nesting, including recursion), the software is responsible to save

and restore the Libra state on a software-based stack.

4.3.3 Exceptions. Instructions that may throw exceptions are in-

herently unsafe because whether an exception is thrown depends

on the value of their operands and handling an exception impacts

both the timing and resource usage of an application. Therefore,

such instructions should be treated similarly to other unsafe, bal-

anceable instructions, by balancing the unsafe operands and their

dependencies.

4.4 Hardware-Software Security Contract

In summary, with Libra we propose a hardware-software security

contract for balanced execution. If both parties fulfill their part of

the contract, then executing a balanced code region will not leak

more information than the equivalent linearized region.

On the hardware side, Libra imposes the following requirements:

HR1 A leakage contract for control-flow balancing is provided.

HR2 The PC does not leak at a finer granularity than a slice.

HR2a The instruction memory access pattern does not depend on

the outcome of the level-offset branch (implied by HR2).

HR3 The level-offset branch and the level-offset call are safe in-

structions.

On the software-side, Libra relies on:

SR1 A correct identification of secret-dependent regions and func-

tions called from secret-dependent regions.

SR2 A secure balancing according to a weak observer mode as

prescribed by the leakage contract. In practice, this entails

making sure that secrets do not directly flow to unsafe in-

structions, applying a balancing algorithm (such as the one

from [94]), and providing dummy versions for functions

called from secret-dependent regions.

SR3 A correct folding of the balanced regions and functions. In

Section 5.3, we give a folding algorithm.

5 FORMAL SEMANTICS

5.1 Language and Semantics

5.1.1 Language. The Libra folding transformation transforms pro-

grams written in a source assembly language asm1
to a target

language asm (Figure 2).

Source language. In addition to standard ISA instructions, the

source language asm is equipped with additional syntactic con-

structs to: (1) identify secret-dependent branches (SR1), and (2) as-
sociate functions that can be called in secret-dependent regions

with a dummy version (SR2). These constructs should be seen as in-

formation derived from source-level annotations. Secret-dependent

branches, s.br 𝑐 ℓ𝑡 ℓ𝑓 , indicate that the condition 𝑐 is secret and

inform the Libra transformation about secret-dependent regions

to fold. Their semantics is similar to regular conditional branches.

Secret-dependent calls, s.call 𝑏 ℓ ℓ′, indicate that the function

1
Following common practice [71], we denote source objects with a blue, sans − serif
font and target objects with a red, bold font. Objects common to source and target

are written with black normal font.

(Values) 𝑣 ∈ V (Registers) x ∈ R (Labels) ℓ, ℓ𝑡 , · · · ∈ L
⟨𝑒𝑥𝑝⟩ ::= 𝑣 | x
⟨𝑖𝑛𝑠𝑡⟩ ::= op1 x ⟨𝑒𝑥𝑝⟩ | op2 x ⟨𝑒𝑥𝑝⟩ ⟨𝑒𝑥𝑝⟩ | store ⟨𝑒𝑥𝑝⟩ ⟨𝑒𝑥𝑝⟩

| br ⟨𝑒𝑥𝑝⟩ ℓ𝑡 ℓ𝑓 | call ℓ | ret
⟨inst⟩ ::= s.br ⟨𝑒𝑥𝑝⟩ ℓ𝑡 ℓ𝑓 | s.call 𝑏 ℓ ℓ′ | ⟨𝑖𝑛𝑠𝑡⟩
⟨inst⟩ ::= lo.br ⟨𝑒𝑥𝑝⟩ 𝑣 𝑣 𝑣 | lo.call 𝑏 ℓ | ⟨𝑖𝑛𝑠𝑡⟩

Figure 2: Syntax of asm and asm instructions where op1 ∈
{neg, load . . . } and op2 ∈ {add,mul, . . . } are non-control-flow-

altering unary and binary instructions and 𝑏 ∈ {⊥,⊤} is an
immediate boolean operand. A program 𝑃 is a partial map-

ping from locations to instructions and 𝑃 [ℓ] denotes the in-
struction at location ℓ .

at address ℓ′ is the dummy version of the function at address ℓ .

If 𝑏 = ⊤, the original function ℓ is called, whereas if 𝑏 = ⊥, the
dummy function ℓ′ is called. Secret-dependent calls inform the Libra

transformation of functions to fold with their dummy version.

Target language. The target language is equipped with a level-

offset branch and level-offset call, which are used to navigate folded

regions and whose semantics will be detailed later.

5.1.2 Configurations. Source configurations are of the form ⟨𝑚, 𝑟, pc, 𝜌⟩
where 𝑚 : V → V is a memory, mapping addresses to values,

𝑟 : R→ V is a register map, pc is the program counter, and 𝜌 is a

stack of return addresses.
2
To execute a folded region slice-by-slice,

Libra keeps track of the number of basic blocks in the currently

active level (bbc) and the offset of the currently active basic block

(off) in a Libra context, denoted ctx = (bbc, off). The initial Libra
context is (1, 0). A Libra configuration 𝜎 is a tuple ⟨𝑚, 𝑟, pc, 𝜌, _⟩
where ⟨𝑚, 𝑟, pc, 𝜌⟩ is a source configuration, and _ is a stack of Libra
contexts. In the following, we refer to Libra configurations simply

as configurations.

Note that handling function calls and exceptions in folded re-

gions requires a stack of (at least) two Libra contexts. In that setting,

Libra contexts must be saved and restored by the callee in non-leaf

functions. For simplicity, our formalization allows for a stack of

unlimited size.

5.1.3 Semantics. The semantics of Libra, given by the relation

𝜎
𝑜
==⇒𝜎′, defines that the evaluation of an instruction in a config-

uration 𝜎 produces a configuration 𝜎′ and an observation 𝑜 . The

semantics is parameterized by a function obs(𝜎), which defines the

observation produced in a configuration 𝜎 (and will be instantiated

in Section 5.2). We give in Figure 3 an excerpt of semantics rules,

focusing on the important aspects of Libra i.e., the update of the

program counter and the Libra context. The evaluation of an ex-

pression 𝑒 using a register file 𝑟 is given by L𝑒M𝑟 and the evaluation

of a non–control-transfer instruction 𝑖𝑛𝑠𝑡 (e.g., arithmetic, logic, or

memory instruction), is given by a relation ⟨𝑚, 𝑟 ⟩ 𝑖𝑛𝑠𝑡−−−→⟨𝑚′, 𝑟 ′⟩.

2
For simplicity, our formalization features a stack of return addresses. However, a

standard setting with a simple return address register that is correctly saved/restored

on the stack would be equivalent, under the assumption that return addresses do not

interfere with the rest of the program (i.e., no return address overwrite, no pointer

arithmetic on return address, etc).
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The program counter always points to the instruction to be

executed (𝑃 [pc]). To navigate the folded memory layout, we define

a function slice_addr, returning the address of the current slice, and
a function next_slice, returning the address directly following the

current slice:

slice_addr(pc, off) ≜ pc − off
next_slice(pc, bbc, off) ≜ slice_addr(pc, off) + bbc

The rule pc-update defines the evaluation of a non–control-

transfer instruction. It increments the program counter with the

basic block count, effectively jumping to current offset in the next

slice.

The rule lob-true defines the evaluation of a level-offset branch

lo.br 𝑒 offf offt bbc
′
when the condition 𝑒 evaluates to true. It

jumps to the next slice at offset offt and sets the new basic block

count to bbc′. The rule lob-false is analogous and omitted for

brevity.

The rule lo-call defines the evaluation of a level-offset call,

which calls a function folded with its dummy version, at location ℓ .

The rule jumps to the first slice of the function and, according to

the boolean 𝑏, sets the offset to 0 or 1, to execute the original or the

dummy function, respectively. It also sets the basic block count to

2, to account for the folding of the original and dummy functions.

Finally, it pushes the return address on the return stack. Normal

function calls are similar, but push the initial Libra context (1, 0) to
the Libra stack.

The rule ret defines the evaluation of a return instruction. It

simply jumps to the return address on the top of the return stack

and restores the previous Libra context.

pc-update

𝑃 [pc] = 𝑖𝑛𝑠𝑡 𝑖𝑛𝑠𝑡 ∉ {q.br, q.call, ret}
⟨𝑚, 𝑟 ⟩ 𝑖𝑛𝑠𝑡−−−→⟨𝑚′, 𝑟 ′⟩ pc′ = pc + bbc

⟨𝑚, 𝑟, pc, 𝜌, _ · (bbc, off)⟩
𝑜
==⇒⟨𝑚′, 𝑟 ′, pc′, 𝜌, _ · (bbc, off)⟩

lob-true

𝑃 [pc] = lo.br 𝑒 offt offf bbc
′

LeM𝑟 ≠ 0 pc′ = next_slice(pc, bbc, off) + offt

⟨𝑚, 𝑟, pc, 𝜌, _ · (bbc, off)⟩
𝑜
==⇒⟨𝑚, 𝑟, pc′, 𝜌, _ · (bbc′, offt)⟩

lo-call

𝑃 [pc] = lo.call 𝑏 ℓ

off′ = (if 𝑏 = ⊤ then 0 else 1) pc′ = ℓ + off′
𝜌′ = 𝜌 · pc + bbc _′ = _ · (bbc, off) · (2, off′)

⟨𝑚, 𝑟, pc, 𝜌, _ · (bbc, off)⟩
𝑜
==⇒⟨𝑚, 𝑟, pc′, 𝜌′, _′⟩

ret

𝑃 [pc] = ret pc′ = ℓ

⟨𝑚, 𝑟, pc, 𝜌 · ℓ, _ · (bbc, off)⟩
𝑜
==⇒⟨𝑚, 𝑟, pc′, 𝜌, _⟩

Figure 3: Excerpt of the Libra semantics, where q ∈ {lo, s, Y}
and 𝑜 = obs(⟨𝑚, 𝑟, _ · (bbc, off)⟩).

We additionally equip our source language asm with a source

semantics

𝑜
==⇒, defined in a standard way and omitted here for

brevity. Finally, we let 𝜎
𝑜
==⇒𝑛𝜎′ be the 𝑛-step evaluation from a

configuration 𝜎 to a configuration 𝜎′, where 𝑜 is the concatenation

of observations produced by individual instructions [13].

5.2 Security Policy

5.2.1 Libra Leakage Model. Side-channel observations are cap-

tured in a leakage contract (HR1), which partitions the instruction

set into leakage classes and safe/unsafe instructions (cf. Section 4.1).

In order to leverage leakage classes in a standard security cri-

terion [13], we associate a unique leakage identifier (add, load, br ,
etc.) to each leakage class. The leakage identifier of an instruction

𝑖𝑛𝑠𝑡 is given byℒ(𝑖𝑛𝑠𝑡). For instance, if additions and subtractions
are indistinguishable to an attacker, a possible instantiation ofℒ

is ℒ(add x x x) = ℒ(sub x x x) = add.
Additionally, the instruction set is partitioned into disjoint sets.

Safe unary instructions (I✓) and safe binary instructions (I✓-✓
),

do not expose information about the value of their operands. Con-

versely, unsafe unary instructions (I✗), left-unsafe (I✗-✓), right-

unsafe (I✓-✗
), and left-right-unsafe (I✗-✗) instructions expose in-

formation about the values of their only, left, right, or both source

operands, respectively.

Libra leaves freedom to hardware developers regarding the con-

crete instantiation of leakage classes and safe/unsafe partition-

ing. It only imposes (HR3) that secure branches and level-offset

branches do not leak their outcome—i.e., {lo, s}.br 𝑐 _ ∈ I✓—
and secure calls and level-offset calls do not reveal whether the

original function or the dummy function is actually executed—i.e.,

{lo, s}.call _ ∈ I✓. For our security policy, we additionally re-

quire that normal branches and calls leak their outcome, and that

control-flow-altering instructions belong in a distinct leakage class

from each other and from non-control-flow-altering instructions.

Intuitively, this ensures that low-equivalent source executions are

slice-synchronized: at each step, their program counters belong to

the same slice.

5.2.2 Weak/Strong Observer Mode. The Libra leakage model is

used to instantiate the function obs, which, as mentioned earlier, is

a parameter of the semantics specifying the observation produced

when evaluating an instruction. We define two distinct observer

modes (i.e., instantiations of obs) that we will apply to asm and asm
programs.

The weak observer mode (obs−) exposes all timing and microar-

chitectural effects that are independent of the program counter (i.e.,

the balanceable leakage). The leakage classes and safe/unsafe parti-

tioning determine the instantiation of obs− , as defined in Figure 4.

The strong observer mode (obs+) includes observations of the
weak mode, plus the observable part of the program counter (i.e.,

the unbalanceable leakage), which, from HR2, does not expose

more than the address of the current slice:

obs+ (⟨𝑚, 𝑟, pc, 𝜌, _ · (bbc, off)⟩) = slice_addr(pc, off)·
obs− (⟨𝑚, 𝑟, pc⟩)

5.2.3 Security. Security is defined with respect to a partition of the

initial state (memory and registers) into public and secret regions.
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safe

𝑃 [pc] = op2 x 𝑒1 𝑒2
op2 x 𝑒1 𝑒2 ∈ I✓-✓ op2 = ℒ(op2 x 𝑒1 𝑒2)

obs− (⟨𝑚, 𝑟, pc⟩) = op2

l-unsafe

𝑃 [pc] = op2 x 𝑒1 𝑒2
op2 x 𝑒1 𝑒2 ∈ I✗-✓ op2 = ℒ(op2 x 𝑒1 𝑒2) 𝑣 = L𝑒1M𝑟

obs− (⟨𝑚, 𝑟, pc⟩) = op2 𝑣

Figure 4: Definition of obs− according to the Libra leakage

contract (excerpt). Other rules (r-unsafe, lr-unsafe, etc.)

are analogous.

Definition 8 (Indistinguishability). Two states 𝜎 , 𝜎′ are indistin-
guishable, written 𝜎 ≃ 𝜎′, if they agree on the value of their public

registers and public memory locations.

We define security as (termination-insensitive) Observational
Non-Interference (ONI) [36] w.r.t. an observation function obs:

Definition 9 (obs-ONI). A program 𝑃 , interpreted in a semantics

==⇒ , is secure under observer mode obs, written obs-ONI(𝑃) if and
only if for any pair of initial configurations 𝜎0, 𝜎

′
0
, if 𝜎0 ≃ 𝜎′

0
, and

𝜎0
𝑜
==⇒𝑛𝜎𝑛 , then 𝜎′

0

𝑜’
==⇒𝑛𝜎′𝑛 and 𝑜 = 𝑜′.

Intuitively, the goal of our Libra transformation is to trans-

form asm programs that are obs−-ONI, to asm programs that are

obs+-ONI. In other words, developers should make sure that secrets

do not directly flow to insecure instructions and balance secret-

dependent branches (SR2), while Libra—with compiler (SR3) and

hardware (HR2) support—guarantees that the target program is

secure with respect to a strong observer that can observe (parts of)

the program counter through microarchitectural side-channels.

5.3 Libra Transformation

To automatically support Libra (SR3), we define a folding transfor-

mation F from asm programs—with annotated secret-dependent

branches (SR1) and dummy functions for functions that can be

called in secret-dependent regions (SR2)—to asm programs. For

clarity, we present the transformation informally, with illustrative

examples, and leave the formalization to Appendix A.

5.3.1 Folding secret-dependent regions. For each balanced secret-

dependent region 𝑆—annotated in asm programs by a secret-dependent

branch s.br 𝑒 ℓ𝑡 ℓ𝑓 —the transformation first computes the level

structure 𝐿0 . . . 𝐿𝑛 of the region. Next, for all levels 𝐿𝑖 , the transfor-

mation rewrites each terminating instruction {Y, s}.br 𝑒 ℓ𝑡 ℓ𝑓 in the
level with a level-offset branch lo.br 𝑒 offt offf bbc where bbc
is the basic block count of the next level (i.e., |𝐿𝑖+1 |), and offt and
offf are the level offsets corresponding to ℓ𝑡 and ℓ𝑓 , respectively,

in the level 𝐿𝑖+1. Finally, for each level of the level structure, the

transformation folds the corresponding basic blocks by interleaving

their instructions.

Example 1 (Folding branches). Consider the balanced secret-

dependent region in Listing 5a and let 𝐵En, 𝐵t, 𝐵tt . . . 𝐵Ex be the

basic blocks corresponding to labels En, t, tt, . . ., Ex. The compiler

first computes the level structure of the region: 𝐿0 = {𝐵En}, 𝐿1 =

{𝐵t, 𝐵f}, 𝐿2 = {𝐵tt, 𝐵tf, 𝐵ft, 𝐵ff}, 𝐿3 = {𝐵Ex}. Next, the transfor-
mation rewrites the terminating instruction in each level (except 𝐿3)

with level-offset branches. For instance, terminating instructions of

𝐿1 are replaced with lo.br 𝑐 offt offf |𝐿2 | where offt, offf are
computed according to the mapping {tt ↦→ 0, tf ↦→ 1, ft ↦→ 2, ff ↦→
3}. Finally, the transformation interleaves the basic blocks in each

level, giving the program in Listing 5b.

Listing 5: Libra transformation (Listing 5b) of a balanced

secret-dependent branch (Listing 5a) where j Ex is syntactic

sugar for br 0,Ex,Ex; lo.j is syntactic sugar for lo.br 0,0:0:1; and

𝑖t, 𝑖
′
t
, . . . are arbitrary non-terminating instructions.

En: s.br c,t,f
t: 𝑖t; 𝑖′t

br d,tt,tf
tt: 𝑖tt; j Ex
tf: 𝑖tf; j Ex
f: 𝑖f; 𝑖′f

br e,ft,ff
ft: 𝑖ft; j Ex
ff: 𝑖ff; j Ex
Ex: [...]

(a)

En: lo.br c ,0:1:2
L1: 𝑖t; 𝑖f

𝑖′t; 𝑖′f
lo.br d ,0:1:4
lo.br e ,2:3:4

L2: 𝑖tt; 𝑖tf; 𝑖ft; 𝑖ff;
lo.j; lo.j; lo.j; lo.j

Ex: [...]

(b)

5.3.2 Folding functions. First, the algorithm computes the union

of the level structures of the functions (the original and the dummy

function) to fold. Then, similarly as for secret-dependent branches,

it replaces branches with level-offset branches, and interleaves

instructions according to the level structure. Finally, it replaces the

call with a level-offset call lo.call 𝑏 ℓ , where ℓ is the (fresh) label

of the folded function.

Example 2 (Folding functions). Consider the program in List-

ing 6a and let 𝐵foo, 𝐵t, 𝐵f . . . 𝐵Ex' be the basic blocks corresponding

to labels foo, t, f, . . ., Ex'. The compiler first computes the union

of the level structure of the functions: 𝐿0 = {𝐵foo, 𝐵foo'}, 𝐿1 =

{𝐵t, 𝐵f, 𝐵t', 𝐵f'}, 𝐿2 = {𝐵Ex, 𝐵Ex'}. The transformation then rewrites

the terminating instructions and interleaves the basic blocks in each

level, giving the program in Listing 6b.

Listing 6: Libra transformation (Listing 6b) of a call inside

a balanced secret dependent region (Listing 6a) where j Ex

is syntactic sugar for br 0,Ex,Ex; lo.j n is syntactic sugar for

lo.br n,0:1:2; and 𝑖0, 𝑖
′
0
, . . . are arbitrary non-terminating in-

structions.

[...]
s.call ⊤,foo ,foo '
[...]
foo: 𝑖0

br c,t,f
t: 𝑖1; 𝑖2; j Ex
f: 𝑖3; 𝑖4; j Ex

Ex: ret
foo ': 𝑖′

0

br c',t',f'
t': 𝑖′

1
; 𝑖′

2
; j Ex '

f': 𝑖′
3
; 𝑖′

4
; j Ex '

Ex ': ret

(a)

[...]
lo.call ⊤,ffoo
[...]
ffoo: 𝑖0; 𝑖′

0

lo.br c 0:1:4;
lo.br c' 2:3:4

L2: 𝑖1; 𝑖3; 𝑖′
1
; 𝑖′

3

𝑖2; 𝑖4; 𝑖′
2
; 𝑖′

4
;

lo.j 0; lo.j 0;
lo.j 1; lo.j 1

Ex '': ret; ret

(b)
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5.4 Correctness and Security

This section states the correctness and security of our Libra trans-

formation F . First, we establish a correspondence relation between

source and target configurations. Intuitively, this relates source and

program configurations that are at the same point of execution and

have the same memory and register states.

Definition 10 (𝜎
P∼ 𝝈 ). A source configuration 𝜎 = ⟨m, r, pc, 𝜌⟩ for

a program P is related to a target configuration 𝝈 = ⟨m, r, pc, 𝝆,𝝀⟩
for a program P, denoted 𝜎 P∼ 𝝈 , if and only if the following holds:

(1) m = m, (2) r = r, and (3) pc
P∼ℓ pc, where

P∼ℓ relates program
locations in the source program to their corresponding location in

the target program.

Libra is a correct program transformation, preserving program

semantics, as established by the following proposition:

Proposition 1 (Correctness). For any asm program P, number
of steps 𝑛, and initial source and target configurations 𝜎 and 𝝈 such
that 𝝈 P∼ 𝜎 , if 𝜎 ==⇒𝑛𝜎′ then 𝝈 ==⇒𝑛𝝈 ′ and 𝜎′ P∼ 𝝈 ′, where ==⇒ is
parameterized by P and ==⇒ is parameterized by F (P).

Libra is a program transformation that hardens programs se-

cure against a weak attacker, to programs secure against a strong

attacker, as established by the following proposition:

Proposition 2 (Security). For any asm program P,

obs−-ONI(P) =⇒ obs+-ONI(F (P))

Proof sketches are given in the companion technical report [92].

6 CFL CHARACTERIZATION

Based on a rigorous analysis of the microarchitectural attack litera-

ture (cf. Table 1 for references), we now present a characterization

of hardware optimizations regarding how they have been exploited

to leak the control flow of applications. The importance of this

characterization is twofold. First, it provides a mental framework

for improving the understanding of CFL, which also guided the

design of Libra. Second, it provides the basis to establish recommen-

dations for hardware designers wishing to adopt Libra. The results

of our CFL attack analysis, i.e., the raw data for our characteriza-

tion, are presented in Table 1. Each row in this table corresponds

to a microarchitectural optimization. The first column names the

optimization and points to representative papers exploiting it for

CFL attacks. The second column indicates if the hardware optimiza-

tion yields balanceable observations (i.e., if they can be balanced

without Libra support). The third column lists our recommendation

on how to handle the leakage using Libra. The last column contains

additional notes.

We start by dividing the optimizations into two top-level classes:

those that yield balanceable observations (class C1), and those that

yield unbalanceable observations (class C2).

C1 - Balanceable observations

For optimizations yielding balanceable observations, the hardware

can rely on the software to balance these observations according

to the Libra leakage contract (SR2).

C2 - Unbalanceable observations

Optimizations yielding unbalanceable observations inevitably leak

the control flow when the processor executes weakly balanced

code. One of objectives of Libra is to keep the optimizations in this

category enabled as much as possible. We further break down this

category into two subcategories.

C2.1 - Inhibiting dummy composition. The first subcategory groups

optimizations that inhibit the composition of a dummy instruction.

Consider for example the silent-store optimization [56, 81]. A silent

store writes a value to memory that is already present at the speci-

fied address. A silent-store optimization skips writes to memory for

silent stores. This behavior turns a store instruction from a right-

unsafe into a full-unsafe instruction since its timing and resource

usage will depend not only on the memory address operand, as

before, but also on the value to store. To securely balance an unsafe

instruction, both of its operands must be balanced as well. Yet, since

a store affects architectural state, a silent store is the only possible

dummy instruction to balance a store, which would leak the control

flow in the presence of a silent-store optimization.

Guideline: Disable instances from this optimization class in

folded regions. In case that the composition of a dummy instruction

is inhibited by the combination of multiple optimizations, it some-

times suffices to disable only one of them. An alternative solution to

disabling the optimization is to blocklist the affected instruction(s)

in the hardware-software security contract (HR1).

C2.2 - Observations as a function of the instruction address. The
second subcategory concerns optimizations yielding observations

that are a function of the instruction address. We further divide

this subcategory into four optimization classes.

C2.2.1 - Observations that reveal the level offset. Some optimiza-

tions yield observations that are inherently different for each in-

struction within a slice. Hence, they inevitably reveal the level offset
of an executed instruction. Take the branch predictor for instance.

The possible targets of a lo.br instruction are different for each

lo.br of the same slice. Hence, if lo.br targets are encoded in

the branch predictor, an attacker sharing the predictor state could

distinguish lo.br instructions within a slice and learn the level

offset.

Guideline: Disable optimizations of this type in folded regions.

For some optimizations, it is necessary to completely disable them

(e.g., cache banking [99]), for others this might be unnecessary,

such as in the example of the directional predictor we gave, which

must only be disabled for a lo.br instruction.

C2.2.2 - Libra-safe optimizations. Some optimizations, such as

the instruction cache, directly benefit from HR2a, which imposes

a data-oblivious access pattern to the instruction memory. If the

processor frontend follows HR2, by implementing slice-granular

fetch/decode, these optimizations do not leak at a finer granularity

than a slice.

Guideline: No hardware modifications are required.

C2.2.3 - PC-dependent mappings. Some optimizations map in-

struction addresses to instruction-specific information. The BTB

and the PC-based strided data prefetcher, for instance, are typically
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Table 1: Control-flow leakage attack landscape.

Exploited Optimization Balanceable Guideline Notes

Computation simplification [9] ✓ C1 Alternatives: reject program, DIT [10, 49]

Data TLB [37, 88] ✓ C1 Balance address operands (page granular)

Data cache [40, 59, 69, 72, 98] ✓ C1 Balance address operands (cache-line granular)

Data cache bank [99] ✓ C1 Balance address operands (byte granular)

DRAM row buffer (data) [73] ✓ C1 Balance address operands

Data-dependent data prefetcher [22, 81] ✓ C1 Balance address operands (loads/stores) and value operands (stores)

Load/store buffers ✓ C1

Pipeline interlock [63, 84, 99] ✓ C1 Balance stalling data dependencies

µop fusion [79] ✓ C1

Execution engine [7, 15, 32, 33, 80, 90] ✓ C1 Balance structural dependencies

Interrupt controller [64, 86] ✓ C1 Balance interrupt latencies

Reorder buffer (ROB) [5] ✓ C1 Balance instruction types

Memory bus / controller [17, 18, 89, 96] ✓ C1 Balance memory bus(es) usage

Computation reuse [81] ✓ C1 Balance operands

Branch order buffer (BOB) [48] ✓ C1

Interconnect [70] ✓ C1

Frontend [76] ✓ HR2 Slice-granular fetch/decode

Instruction cache [1, 23, 43, 59, 98] ✓ C2.2.2 Balancing (confining region inside a single cache line) is more limited

MMU / Page tables [20, 64, 88, 97] ✓ C2.2.2 Balancing (confining region inside a single page) is more limited

DRAM row buffer (instructions) [73] C2.2.2

Instruction prefetcher [57, 102] C2.2.2

Instruction TLB [37, 88] C2.2.2

PC-dep data prefetcher [14, 23, 24, 39, 82] C2.2.3

Directional predictor [2, 3, 31, 47] C2.2.3 Only for public branches, disable for lo.br
BTB [30, 55, 101] C2.2.3 Care must be taken not to leak the target transiently

Value prediction [27, 81] C2.2.3

µop cache (DSB) [26, 51, 79] C2.2.4 Alternative: disable in folded regions

Silent stores [81] C2.1 Disable in folded regions

Instruction cache bank [99] Disable Disable in folded regions (violates HR2)

implemented using table-based structures indexed by instruction

address.

Guideline: Thanks to folding, it becomes possible to represent

instruction-specific information as slice-specific information. Map-

pings from instruction address to instruction-granular information

can be changed into mappings from slice address to slice-granular

information (per HR2). This usually requires minimal hardware

modifications such as indexing hardware structures by slice address

instead of by instruction address.

C2.2.4 - Instruction-specific optimizations. Some optimizations

perform different operations depending on the instruction and are

not generalizable to the slice, contrary to optimization class C2.2.3.

An example is the µop cache, where the operations, decode, insert
and evict, depend on the specific instruction.

Guideline: Instead of disabling these optimizations, it might

be more beneficial to keep them enabled and always perform the

operation on every instruction of the slice. Keeping optimizations

enabled for instances for this optimization class will typically be

more expensive compared to optimization class C2.2.3.

7 IMPLEMENTATION AND EVALUATION

7.1 Implementation

Following the requirements from Section 4.4 and the guidelines

from Section 6, we implemented Libra on Proteus [16] (version

2024.01-O), a RISC-V out-of-order core designed to experiment

with hardware security extensions.

HR1: Leakage contract. We partitioned the RISC-V instruction

set into leakage classes and validated the correctness of this classi-

fication via our automated security evaluation (cf. Subsection 7.2).

In particular, load instructions leak their address via the data cache

and are balanced in software.

HR2: Slice-granular PC leakage. Based on our analysis, the sources
of precise PC leakage on Proteus were the branch target predictor,

the instruction cache, and the instruction prefetcher. For security

reasons, we completely disable the branch predictor in folded re-

gions. Yet, thanks to the linear layout of folded regions, the perfor-

mance impact of this is limited: the next slice—where the execution

will continue—will be prefetched by the time the branch condition is

resolved. The other hardware structures did not have to be altered,

as explained next.

HR2a: Data-oblivious instruction memory access pattern. The
instruction fetch unit has been made Libra-aware. In a secret-

dependent folded region, the level offset of the currently executing

instruction needs to be invisible to the memory subsystem. In our

implementation, this is achieved by fetching in a fixed order all

cache lines including instructions from the current slice. This also

results in the state of the instruction cache being independent from

the level offset. As the prefetcher’s behavior in Proteus only de-

pends on the instruction cache state, it also observes the same access

patterns and does not require any additional changes. Thanks to

the folded layout in memory, the prefetching remains very effective

during the execution of folded regions.
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Table 2: Overhead factors: execution time (cycles) / binary

size (bytes).

Benchmark Baseline Balanced Linearized Folded

fork 110 c / 136 B 1.00x / 1.00x 1.11x / 1.12x 1.00x / 0.94x

triangle 116 c / 132 B 1.03x / 1.06x 1.05x / 1.15x 0.98x / 1.00x

bsl 1415 c / 336 B 1.20x / 1.04x 1.54x / 1.08x 1.24x / 1.01x

diamond 186 c / 192 B 1.07x / 1.10x 1.18x / 1.23x 1.06x / 1.04x

kruskal 1573 c / 452 B 1.09x / 1.05x 1.21x / 1.16x 1.16x / 1.04x

ifthenloop 407 c / 200 B 1.35x / 1.20x 1.28x / 1.20x 1.56x / 1.16x

switch 1402 c / 500 B 2.11x / 1.41x 2.70x / 1.92x 1.90x / 1.15x

sharevalue 1410 c / 500 B 1.38x / 1.02x 1.76x / 1.15x 1.77x / 1.01x

mulmod16 339 c / 276 B 1.23x / 1.01x 1.47x / 1.16x 1.32x / 0.96x

keypad 3490 c / 416 B 2.86x / 1.08x 3.48x / 1.12x 3.61x / 1.06x

modexp2 11716 c / 324 B 1.72x / 1.02x 1.79x / 1.09x 1.78x / 1.01x

mean 1.38x / 1.09x 1.57x / 1.20x 1.46x / 1.03x

HR3: Level-offset branch. For our implementation, we introduced

a variant of the lo.br instruction, the terminating level-offset branch
tlo.br. This instruction behaves similarly as a regular lo.br, but
additionally encodes the number of slices in the next level, an

optimization that makes the lo.br instructions of the last level of

a folded region unnecessary. Our prototype encodes the lo.br and

tlo.br variants for each RISC-V branch instruction by repurposing

the two prefix bits in the fixed-width 32-bit RISC-V encoding, but

other implementations could use the free opcode slots as defined by

the RISC-V specification. The current and previous Libra contexts

are stored in a two-level hardware stack. We support folded regions

with up to 16 basic blocks per level (8 for a terminating level).

7.2 Evaluation

We evaluated our implementation by measuring the binary size and

execution time overheads using a benchmark suite from related

work [18, 75, 85, 93, 94]; measuring the hardware overhead; and

performing RTL-level noninterference testing to validate security.

Binary size. The results on binary size can be found in Table 2,

which shows the binary size of the original benchmark, the over-

head of balancing the secret-dependent branches (which still leaks

information through unbalanceable observations), the overhead of

linearizing the secret-dependent brancheswithMolnar’smethod [66],

and finally, folding the secret-dependent branches with Libra. The

benchmarks show that the overhead is small compared to state-of-

the-art linearized (constant-time) code. In certain cases, the folded

program can even be expressed more succinctly due to the charac-

teristics of folded regions; after the last slice, the next instruction

will be executed regardless of which branch was taken, making

additional jump instructions, such as in Listing 1a, unnecessary.

Execution time. We evaluate the execution time overhead us-

ing the same extended benchmark suite, shown in Table 2. Even

though our prototype implementation is not optimal, the bench-

marks clearly show an advantage of Libra over linearized code. The

mean performance overhead of Libra is 46% compared to 57% of the

linearized code (a relative overhead reduction of 19.3%), and for cer-

tain benchmarks it not only performs much better than linearized

code, but also outperforms insecure balanced code. For example,

the switch and triangle benchmarks clearly show the power of

Libra over alternative approaches.

Hardware cost. We evaluate the hardware cost of implement-

ing Libra on Proteus by synthesizing the design to the Xilinx

XC7A35TICSG324-1L FPGA in Xilinx Vivado 2022.2. According

to our measurements, the Libra additions increase the number of

look-up tables by 11.4% (from 16,531 to 18,414), the number of regis-

ters by 9.5% (from 13,566 to 14,850), while keeping the critical path

unchanged (37.4 ns).

Security. To evaluate the security of our implementation, we

adopt amethodology from relatedwork [18, 93, 94]: noninterference-

based testing in a cycle-accurate Verilog simulator. For each bench-

mark, we manually ensure that all possible code paths are explored,

which is feasible due to the relatively small size of the benchmarks.

We verify that, for executions with identical public inputs but vary-

ing secret inputs, the processor’s internal signals associated with

side channels remain consistent. Any variation would indicate a

leak of secret information. The signals we focus on include the

state of the branch predictor, addresses in the instruction and data

caches, the state of the instruction prefetcher, and the occupancy of

the execution units. Each simulation is run independently, starting

from a cold microarchitectural state.

Interestingly, our security evaluation revealed that the hardened

kruskal benchmark (originally introduced in [62]) contains a re-

cursive function with a secret-dependent number of iterations, as

hypothesized by the original authors. As a linearized implementa-

tion of Kruskal’s algorithm is not a trivial effort and out of scope

for our paper, we only transformed the secret-dependent branch in

the main function of the benchmark.

8 DISCUSSION

Intra-cache-line attacks. HR2 requires that the PC does not leak

at a finer granularity than a level slice. This implies that executing

folded regions is secure only if an attacker is unable to observe

intra-cache-line instruction memory accesses in folded regions.

To the best of our knowledge, only two published attacks expose

intra-cache-line accesses: cache-bank conflicts [63] and false de-

pendencies [99]. To comply with HR2, the optimizations exploited

by these attacks must be disabled in folded regions. However, we

do not consider them to be performance-critical. In more recent

microarchitectures these leakages have been closed, confirming our

assumption that HR2 will not significantly affect the performance.

Future work. There are some open questions that should be ad-

dressed in future work. First, a limitation with the implementation

of our prototype is that the pipeline stalls after fetching a lo.br
(until its condition is resolved). As described in Section 4, the linear-

ity of folded regions removes the uncertainty of what instructions

to fetch after a lo.br. However, the uncertainty of what instruction
to execute (i.e., what is the level offset of the next instruction in the

next prefetched slice?) still remains. For security reasons, the CPU

cannot proceed based on a prediction of the direction of the lo.br
as this would induce a timing signal exposing the control flow. On

the RISC-V processor we used for our implementation, the lo.br
penalty is generally only a few cycles. However, the penalty on

superscalar CPUs with deeper pipelines (capable of fetching and

executing multiple instructions in a single cycle) is much higher.

How to deal with the lo.br penalty on this class of CPUs (up to

10-15 cycles on some CPUs [45]) remains an open design question.
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We believe that exploiting the regularity and the linearity of folded

regions is key to solving this challenge.

Second, we informally argue (Table 1) that many optimizations

either comply with HR2, or can be adapted to do so. Our empir-

ical evaluation on an implementation featuring instruction and

data caches, branch predictor and prefetcher, supports this argu-

ment. Formally verifying that these optimizations comply with

HR2 would be an interesting avenue for future work.

Third, there is no compiler support for Libra. We manually iden-

tify, balance and fold secret-dependent regions at assembly level,

restricting the size of our benchmark programs. Compiler support

for Libra to be able to conduct more extensive performance mea-

surements on real-world programs is future work.

Fourth, we put software-based fault attacks [68] and software-

based power attacks [58] out of scope. It is interesting future work

to extend the leakage contract to cover these attacks.

Fifth, we only considered fixed-length instructions. Variable-

length instructions, as found in the popular x86 ISA, might require

some changes to the current Libra design. To increase the chances

of adoption on architectures with variable-length instructions, it

would be interesting to investigate how to support them.

Finally, creating the leakage contract is a manual effort. A very

interesting avenue for future work is to investigate how to generate

the leakage contract from the hardware description (RTL level), as

done in recent work [29, 46, 65], and how to express contracts such

that they can be consumed by a compiler [42].

9 RELATEDWORK

CFL Hardening. The literature contains a vast amount of prior

work on software-only countermeasures against CFL attacks. Al-

most 25 years ago, Agat [4] already proposed a transformational

security type system to balance conditional branches, later refined

by Köpf and Mantel [53]. Non-transformational type systems to de-

tect unbalanced branches have been implemented for the AVR [28]

and MSP430 [75] architectures. Winderix et al. [94] proposed an

algorithm for control-flow balancing during compilation and im-

plemented and evaluated it using the LLVM compiler infrastruc-

ture [54]. Prior work considers secret-dependent control flow in-

herently insecure and strongly discourages control-flow balancing

as a defense against CFL attacks. This view is incorporated in the

well-established constant-time programming discipline [8], which

disallows programmers from writing secret-dependent branches.

There is a rich literature to automatically detect [35, 50] and elimi-

nate [19, 66, 78, 83, 87, 95] secret-dependent control flow.

Architectural Support. Many existing software-only countermea-

sures leverage hardware primitives designed with performance in

mind. The resulting security guarantees are brittle, as these coun-

termeasures rely on undocumented behavior that is not guaranteed

in future versions of the hardware. For instance, conditional exe-

cution (a.k.a. predicated execution or predication) is supported in

some form by the x86, Arm and RISC-V ISAs to accelerate some

hard-to-predict branches, yet is sometimes used to eliminate secret-

dependent control flow [19, 25, 95], critically relying on the (current)

data-oblivious behavior. Another example is Intel TSX, used as a

primitive for a countermeasure proposed by Gruss et al. [38]. In

contrast, Libra provides principled support by augmenting the ISA

with a security contract representing its security guarantees. Many

modern CPUs provide safe instructions, making explicit security

guarantees part of the ISA. An example is constant-time support

for AES to improve speed and security of applications relying on

it (e.g., [6]). As another example, x86, Arm and RISC-V ISAs have

extended their ISAs with facilities to turn unsafe instructions into

safe instruction via a feature called Data (Operand) Independent

Timing [10, 49]. To the best of our knowledge, architectural sup-

port to securely execute balanced code on high-end processors has

not been proposed before. Recently, Winderix et al. [93] proposed

architectural support for control-flow balancing and control-flow

linearization to efficiently counter CFL attacks. Unfortunately, their

solution for control-flow balancing is only targeted towards pro-

cessors with a microcontroller profile featuring simple processor

pipelines. In contrast, our proposal for control-flow balancing is

designed to securely execute balanced regions on high-end systems.

Hardware-Software Leakage Contracts. Recentwork on hardware-
software leakage contracts [41, 44, 61, 67, 74] proposes to augment

the ISA with a specification of how the hardware leaks information.

Libra also specifies such a hardware-software leakage contract and

partitions the instruction set into leakage classes. Instructions of

the same leakage class leak the same information and thus are

indistinguishable to an attacker. The first idea for classifying the

instruction set this way was proposed by Winderix et al. [94] under

the form of latency classes, a concept that was later generalized

into leakage classes by Bognar et al. [18]. Yu et al. [100], propose

ISA design principles for data Oblivious ISAs (OISAs) to perform

side-channel resistant and high-performance computations. The

authors proposes an ISA-level data oblivious abstraction, which

partitions the instruction set into safe and unsafe instructions. In

contrast to Libra, their work does not include ISA-level principles

to make control-transfer instructions data oblivious, and hence is

complementary to ours.

Secure Compilation for Side-Channel Defenses. Our secure com-

pilation proof is inspired by existing proof techniques for preser-

vation of side channel defenses by compilers [11–13] with some

adaptations to account for important differences. Compared to the

constant-time policy [11], balancing allows program counters of

low-equivalent executions to diverge, and compared to constant-

resource transformation [12], our transformation is not entirely

leakage preserving. In this work, we assume a non-canceling leak-

age model (i.e., 𝑜1 · 𝑜2 = 𝑜′
1
· 𝑜′

2
=⇒ 𝑜1 = 𝑜′

1
∧ 𝑜2 = 𝑜′

2
). Secure

compilation for relaxed policies based on canceling leakage (e.g.,

program cost in terms of clock cycles) have been proposed [12].

However, it remains unclear whether there exist a concrete threat

model (attacker model and microarchitecture) to which these poli-

cies securely apply. In particular, such relaxed policies are insecure

against the strong attacker that we consider in this paper [86].

10 CONCLUSION

In this paper, we challenged the widely-held belief that control-flow

balancing is either insecure or inefficient on modern out-of-order

CPUs. We proposed Libra, a novel hardware-software codesign for

principled, secure and efficient balanced execution. We gave evi-

dence that it is possible with minimal hardware support to securely
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balance secret-dependent control flow while keeping performance-

critical hardware optimizations enabled. A key feature of Libra is

the specification of a hardware-software security contract that soft-

ware can rely on to harden applications in a principled way, similar

to how software relies on an ISA specification for the functional

correctness of programs. Libra minimally extends the instruction

set to make balanced execution secure and efficient on high-end

systems, mainly by virtue of folding. We formalized the Libra se-

mantics and the folding transformation, which we proved correct

and secure. We also presented a characterization of how microar-

chitectural optimizations can leak a program’s control flow, the

basis for our recommendations for hardware designers wanting to

adopt Libra to their designs. Our implementation and evaluation

show significant performance benefits compared to state-of-the-art

control-flow linearization at low hardware cost.
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A FOLDING TRANSFORMATION

This section details our folding transformation F from asm pro-

grams to asm programs.

Notations. In the following, we let 𝐵 [𝑖] denote the 𝑖th instruction

in basic block 𝐵. We also let 𝐵Y denote the empty basic block. By
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definition of a CFG, all program labels point to the beginning of a

basic block and we write 𝐵ℓ to denote the basic block corresponding

to label ℓ . In a level 𝐿, we assume that basic blocks are indexed, and

we let idx(𝐿, 𝐵) denote the index of basic block 𝐵 in level 𝐿.

We let 𝑆 = (𝐵𝑒𝑛𝑡𝑟𝑦, 𝐵𝑒𝑥𝑖𝑡 , {𝐵1, . . . , 𝐵𝑛}) denote a secret depen-
dent region {𝐵1, . . . , 𝐵𝑛}, with entry block 𝐵𝑒𝑛𝑡𝑟𝑦 and exit block

𝐵𝑒𝑥𝑖𝑡 . We let entry(𝑆) and exit(𝑆) return the entry and exit basic

block of the region, respectively. We let 𝐹 = (ℓ𝑓 , {𝐵1, . . . , 𝐵𝑛}) de-
note a function, defined by its entry label ℓ𝑓 and its sequence of

basic blocks {𝐵1, . . . , 𝐵𝑛}. Finally, we let level_struct(𝑆) return the

level structure of a secret dependent region 𝑆 (excluding 𝐵𝑒𝑥𝑖𝑡 and

𝐵𝑒𝑥𝑖𝑡 ) and level_struct(𝐹 ) return the level structure of a function.

Secret-dependent branches.We define a function RewriteTermi-
nator(𝐿𝑖 , 𝐿𝑖+1) that rewrites the terminating instructions from a

level 𝐿𝑖 (Algorithm 1). It replace all branches in the level with a

level offset branch lo.br 𝑒 offt offf bbc where bbc is the basic

block count of the next level (|𝐿𝑖+1 |), and offt (resp. offf) is the
basic block number corresponding to ℓ𝑡 (resp. ℓ𝑓 ) in 𝐿𝑖+1.

def RewriteTerminator(𝐿𝑖 , 𝐿𝑖+1):
Input: Level to modify 𝐿𝑖 = {𝐵0 . . . 𝐵𝑛}
Result:Modified level 𝐿′

𝑖
= {𝐵′

0
. . . 𝐵′𝑛}

bbc← |𝐿𝑖+1 |; 𝑙𝑒𝑛 ← |𝐵0 |; {𝐵′
0
. . . 𝐵′𝑛} ← {𝐵0 . . . 𝐵𝑛};

for 𝐵𝑖 ∈ 𝐿𝑖 :
assert |𝐵𝑖 | = 𝑙𝑒𝑛;

switch 𝐵𝑖 [𝑙𝑒𝑛 − 1] :
case {Y, s}.br 𝑒 ℓ𝑡 ℓ𝑓 :

assert 𝐵ℓ𝑡 , 𝐵ℓ𝑓 ∈ 𝐿𝑖+1;
offt, offf ← idx(𝐿𝑖+1, 𝐵ℓ𝑡 ), idx(𝐿𝑖+1, 𝐵ℓ𝑓 );
𝐵′
𝑖
[𝑙𝑒𝑛 − 1] ← lo.br 𝑒 bbc offt offf;

case ret : 𝐵′
𝑖
[𝑙𝑒𝑛 − 1] ← ret;

otherwise : assert False;
return 𝐿′

𝑖
= {𝐵′

0
. . . 𝐵′𝑛}

Algorithm 1: Rewriting of terminating instructions.

Next, we define a function FoldLevel(𝐿), which takes a level 𝐿 =

{𝐵0 . . . 𝐵𝑛} and returns a single folded basic block 𝐵′ interleaving
the instructions of 𝐵0 . . . 𝐵𝑛 (Algorithm 2).

def FoldLevel(𝐿):
Input: Level to fold 𝐿 = {𝐵0 . . . 𝐵𝑛}
Result: Basic block 𝐵′ (folded level)

bbc← |𝐿 |; 𝑙𝑒𝑛 ← |𝐵0 |; 𝐵′ ← 𝐵Y ;

for 𝐵𝑖 ∈ 𝐿 :

assert |𝐵𝑖 | = 𝑙𝑒𝑛;

for 𝑗 ∈ [0, 𝑙𝑒𝑛) : 𝐵′ [ 𝑗 × bbc + 𝑖] ← 𝐵𝑖 [ 𝑗] ;
return 𝐵′

Algorithm 2: Folding of the basic blocks of a level 𝐿.

To fold secret-dependent branches, we define a function FoldRe-
gion(𝑆) that returns the folded version of a secret dependent region
𝑆 (Algorithm 3). The function first computes the level structure of

𝑆 , rewrite the terminators, and fold the level structure.

Function calls. To fold a function 𝐹 with its dummy function

𝐹 ′, we define a function FoldFunction(𝐹, 𝐹 ′, ℓff’) (Algorithm 4) that

def FoldRegion(𝑆):
Input: Secret-dependent region 𝑆

Result: Folded secret-dependent region 𝑆 ′

𝐿1 . . . 𝐿𝑛 ← lvl_struct(𝑆); 𝐿0 ← entry(𝑆);
𝐿𝑛+1 ← exit(𝑆);
for 𝐿𝑖 ∈ 𝐿0 . . . 𝐿𝑛 :

𝐿′
𝑖
← RewriteTerminator (𝐿𝑖 , 𝐿𝑖+1, False);

𝐵′
𝑖
← FoldLevel(𝐿′

𝑖
);

𝑆 ′ ← (𝐵′
0
, exit(𝑆), {𝐵′

1
. . . 𝐵′𝑛});

return 𝑆 ′
Algorithm 3: Folding of a secret dependent region 𝑆 .

returns a folded function with entry label ℓff’. First, the algorithm

computes the union of the level structure of 𝐹 and 𝐹 ′. Then, it
replaces branches with level-offset branches. Finally, it folds basic

blocks according to the level structure and returns the final function,

defined by the set of folded basic blocks and entry label ℓff’.

def FoldFunction(𝐹, 𝐹 ′, ℓff’):
Input: Functions 𝐹 , 𝐹

Result: Folded function 𝐹 ′′

𝐿0 . . . 𝐿𝑛 ← level_struct(𝐹 ) ∪ level_struct(𝐹 ′);
𝐿𝑛+1 ← 𝐵Y ;

for 𝐿𝑖 ∈ 𝐿0 . . . 𝐿𝑛 :

𝐿′′
𝑖
← RewriteTerminator (𝐿𝑖 , 𝐿𝑖+1,True);

𝐵′′
𝑖
← FoldLevel(𝐿′′

𝑖
);

return 𝐹 ′′ = (ℓff’, {𝐵′′0 . . . 𝐵′′𝑛 )}
Algorithm4: Folding of a function 𝐹 with its dummy version 𝐹 ′.
The union of level structures is defined as the componentwise

union of basic blocks.

Finally, we define a function RewriteCall(𝐵), which replaces

all secret dependent calls s.call 𝑏 ℓf ℓf’ with a level-offset call

lo.call 𝑏 ℓff’ where ℓff’ is the label of the folded function.

Final folding transformation. The final folding transformation

P = F (P) performs the following steps: (1) For each pair of func-

tion/dummy 𝐹ℓ𝑓 /𝐹 ′ℓ𝑓 ′ that can be called from a secret-dependent

region (annotated in asm with a secret dependent call), F com-

putes the folded function 𝐹ℓff’ = FoldFunction(𝐹ℓ𝑓 , 𝐹
′
ℓ𝑓 ′

, ℓff’) and

places it at location ℓff’ in P. Functions 𝐹ℓ𝑓 , 𝐹
′
ℓ𝑓 ′

are also included

in P if they can be called with “normal” calls. (2) For each (out-

ermost) secret-dependent region S (annotated in asm programs

by a secret-dependent branch), F computes the folded region S =

FoldRegion(S), and replaces the original region S with S. Note that
for a given secret-dependent region, our algorithm folds its entire

level structure (which includes nested branches). Hence, for nested

secret-dependent branches, only the outermost branch need to be

considered and the nested branches will be automatically folded.

(3) All other basic blocks are directly copied from P to P; (4) Se-
cret dependent calls in P are replaced by RewriteCall(𝐵); (5) In the

final code memory layout of P, the folded levels are placed adja-

cent to each other, in level order: the basic block corresponding to

FoldLevel(𝐿𝑖+1) directly follows the basic block corresponding to

FoldLevel(𝐿𝑖). The exit block of a secret dependent region is also

placed just after the last folded level.
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