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Abstract—The growing interconnectivity of low-end embedded
devices has spurred research into lightweight trusted execu-
tion environments (TEEs), which are designed to meet strict
power, cost, and real-time constraints. A key focus has been
on the development of dedicated frameworks and libraries
to ensure message integrity and authenticity through strong,
sometimes formally verified cryptography. However, existing
security analyses commonly dismiss side channels, assuming
that small microcontrollers are less susceptible to timing
variations than high-end CPUs and that these variations are
easily avoided by good programming practices.

This paper systematically examines timing side channels
in open-source low-end TEEs. We identify subtle vulnera-
bilities at different levels of the hardware-software stack:
(1) the use of non-constant-time C/C++ standard library
functions such as memcmp; (2) compiler-induced timing leaks
for comparing primitive data values; and (3) a hardware-level
timing flaw in the cryptographic core of the Sancus TEE.
We experimentally validate these timing side channels and
build practical exploits to break TEE security guarantees
and inject forged messages. Our findings demonstrate that
timing side channels pose a critical, yet often overlooked
threat to low-end TEEs, underscoring the need for future
security models to account for them.

1. Introduction

As embedded devices become increasingly prevalent
and interconnected, securing their data and operations
is more critical than ever. These devices, which play
vital roles in medical equipment, automotive systems,
and industrial control, require robust security measures
to prevent compromise. However, many 8- and 16-bit
embedded microcontrollers used in these settings lack
established security mechanisms like virtual memory or
CPU privilege levels. To address this gap, specialized
low-end trusted execution environments (TEEs) isolating
small enclave memory regions have emerged as a promis-
ing solution, gaining traction both in academic research
prototypes [1]–[7] and, to some extent, in commercial
microcontrollers [8]–[10]. Given the interconnected nature
of these devices, significant effort has been devoted to
the development of dedicated frameworks and libraries
for authentic execution, leveraging strong cryptography to
transparently ensure the integrity and authenticity of input
and output messages [11]–[16].

While authenticity guarantees for low-end enclaves
are well understood and sometimes even formally mod-
eled [2], [15], [17], any information leakage from timing
side channels is commonly considered out of scope.
Unlike high-end TEEs such as Intel SGX, which have
been extensively analyzed for software-exploitable side-
channel vulnerabilities [18], embedded TEEs run on small
microcontrollers that lack advanced microarchitectural
features, making them less susceptible to timing attacks.
As Noorman et al. [11] state: “Given the kind of small
microprocessors that we target, many side-channels such
as cache timing attacks or page fault channels are not
applicable,” explicitly deferring a side-channel analysis of
their authentic-execution implementation to future work.

In this paper, we demonstrate that writing timing-
independent code for low-end enclaves is fragile and leak-
age can be introduced at different layers of the hardware-
software stack, breaking otherwise sound cryptographic
authenticity and integrity guarantees. First, the standard
libraries of C and C++, often used for the development
of enclave software, are optimized for performance rather
than security. Notably, the memcmp and std::equal
functions halt comparison as soon as they find a difference,
creating a clear timing side channel. Concerningly, our
analysis of open-source embedded TEE research prototypes
reveals uses of plain memcmp and std::equal [12],
[14], and even non-constant-time custom comparison func-
tions [2], [19].

Second, we find that embedded compilers can introduce
unexpected timing leaks that may not be immediately
apparent even to programmers familiar with known com-
piler side effects [20]. Specifically, compilers targeting
microcontrollers often emit non-linear assembly code when
comparing two numbers using C’s equality operator (==)
for commonly used uint32_t or uint64_t values.
Based on our analysis, this compiler issue affects at
least two open-source authentication libraries that rely
on primitive data type equality checks for authentication
tag comparison [13], [15].

Lastly, even hardware logic itself is not free from
timing threats, as we demonstrate by uncovering a subtle
flaw in the tag comparison for authenticated encryption
in the hardware implementation of the Sancus TEE [1].
To showcase the practical implications of the hardware
side channel, we systematically investigate its effects on
different security primitives across various versions of
Sancus and its applications, including a practical attack
that can inject rogue messages in an end-to-end distributed



authentic execution program [12].
From the broader perspective, our findings contribute to

the ongoing discourse on the resilience of TEEs and their
broader implications for cryptographic trust in embedded
systems. Notably, many of the systems we analyze [15],
[17], [19] are shown to be vulnerable despite having formal
proofs of security. Finally, we also propose and evaluate
mitigations in software and hardware for our uncovered
vulnerabilities and discuss how to avoid similar problems
in the future.

Contributions. In summary, our main contributions are:

• We analyze how subtle timing leakage emerges
across different hardware-software layers through
insecure library functions, compiler transforma-
tions, and hardware finite-state machines.

• We demonstrate the impact of these timing dif-
ferences on the security guarantees of embedded
research TEEs and authentication libraries.

• We design and evaluate software and hardware
mitigations with minimal overhead.

• We discuss broader implications and lessons to
prevent these types of vulnerabilities in the future.

Open Science. All our code, data, and scripts are available
at https://github.com/dnet-tee/wait-a-cycle.

2. Background & Related Work

TEEs are a class of security architectures that provide
security guarantees and services for code running on them,
including but not limited to isolation, attestation, and data
sealing. Intel SGX [21] is a representative example of
a commercial TEE running on high-end CPUs. In this
paper, we focus on designs aimed at low-end computing
systems, such as resource-constrained microcontrollers.
Examples in this space include Sancus [1], providing
isolation and attestation, and VRASED [2], offering a
formally verified attestation primitive. These architectures
have also been extended over the years to offer more
rich security guarantees [11], [12], [19], [22], [23]. In the
following, we provide more details on the Sancus TEE,
the main focus of this work. For a more detailed overview
and a collection of related publications, we refer to the
Sancus website.1

2.1. Embedded Trusted Execution Environments

Responding to the specific needs of low-end Internet of
things (IoT) devices without virtual memory and privilege
rings, a series of dedicated embedded TEEs [2]–[4], [24]
have been developed. These architectures aim to (1) isolate
an enclave-like memory region in the single address space;
(2) optionally perform attestation of the protected [4], [6],
[24] or the unprotected region [2], [3]; (3) offer (automated)
facilities for authenticated communication [1], [11], [13].
We briefly overview these primitives below, guided largely
by the open-source Sancus architecture as a representative
example of a low-end TEE.

Sancus 2.0 [1] extends the original Sancus [24] ar-
chitecture for networked embedded devices. It is built on

1. https://distrinet.cs.kuleuven.be/software/sancus/research.php

top of the openMSP430 processor [25], which is an open-
source implementation of the MSP430 microcontroller
created by Texas Instruments [26]. The MSP430 is a
low-end 16-bit instruction set, featuring peripherals and a
flexible clock system that link up using a von Neumann
architecture. Sancus implements minimal hardware exten-
sions for isolation, local and remote attestation, and code
confidentiality. Sancus features a hardware cryptographic
unit that provides integrity and confidentiality to protected
enclaves. The cryptographic unit, written in Verilog, is set
up as a finite state machine (FSM) and is called through
custom assembly instructions. This unit makes use of the
SpongeWrap [27] authenticated encryption scheme using
SPONGENT [28]. We focus on three primitive operations:
unwrap, verify, and enable. In combination with
a key derivation function and a key storage mechanism,
these primitives are used to provide the security services.

Isolation. Enclaves have a single data and code section in
memory. Sancus’s custom hardware circuitry for memory
access control makes enclave-private code and data sections
inaccessible from code located elsewhere in memory.
Compared to the original Sancus architecture, Sancus
2.0 also allows for the confidential loading of enclaves,
protecting the confidentiality of the enclave code from the
untrusted loading mechanism.

Attestation. On platforms supporting multiple enclaves,
these enclaves need a way to securely link together and
verify the confidentiality and integrity of the enclave they
interact with. Potential use cases include a sensor network
where a sensor node needs to verify that the data it receives
originated from a trusted source.

Secure Communication. Secure communication is re-
quired for passing sensitive messages between an enclave
and a third party such as the remote software provider.
This functionality is supported by offering encryption
and decryption primitives in the Sancus hardware. Sancus
1.0 supports data authentication without encryption while
Sancus 2.0 supports both. Using these primitives, a soft-
ware provider can additionally attest the authenticity of
a software module remotely, as the module’s derived key
depends on its contents.

2.2. Authenticity Guarantees

IoT applications, especially event-driven distributed
applications, need authentication guarantees to ensure the
integrity and authenticity of the data they process. To
provide these guarantees, multiple libraries and frameworks
have been proposed, which are discussed next.

Authentic Execution. The authentic execution frame-
work [11], [12] can transparently provide authenticity
guarantees for distributed, event-driven applications where
messages are produced and communicated in a shared,
heterogeneous TEE infrastructure. An example usage
is secure sensor networks [29] relying on the security
guarantees provided by authentic execution. In addition to
the implementation, the authors provide a formalization
and proof sketch of the security guarantees [17].

https://github.com/dnet-tee/wait-a-cycle
https://distrinet.cs.kuleuven.be/software/sancus/research.php


Controller Area Network. Several research proposals
have investigated transparently retrofitting authentication
of security- and safety-critical broadcast messages on low-
end Controller Area Network (CAN) buses, widely used
in automotive or industrial embedded applications.

VatiCAN [14] proposes a backward-compatible pro-
tocol for secure and efficient vehicular communication.
The authenticity of messages is ensured through transpar-
ently inserting and validating additional messages carrying
truncated 64-bit message authentication codes (MACs)
on the underlying CAN bus. LEIA [15] similarly relies
on truncated MACs to provide lightweight, backward-
compatible CAN authentication. Notably, LEIA includes a
protocol-level formalization and security proof under the
MAC unforgeability assumption.

VulCAN [13] explores the use of lightweight trusted
computing technology to further secure CAN authenti-
cation, validating MACs and terminating authenticated
connections inside enclaves. VulCAN re-implements both
the VatiCAN and LEIA protocols on the open-source
Sancus TEE architecture and critically relies on Sancus’s
hardware-level cryptographic unit to provide efficient, real-
time-compliant vehicle message authentication, attestation,
and enclave isolation.

2.3. Side-Channel Analysis on Low-End MCUs

Side channels are a well-known threat to most com-
puting devices. They are the result of sharing resources
between different processes or components. Low-end mi-
crocontrollers have fewer shared resources than commercial
CPUs, usually lacking components such as caches or
branch predictors, and are thus not susceptible to attacks
that exploit these features. However, the absence of these
shared resources renders CPU execution timings more
deterministic. This in turn makes it easier for an attacker
to exploit other side channels such as start-to-end timing.
In the case of Sancus, any feature shared between enclaves
or peripherals can be a potential side channel.

Start-to-End Timing Attacks. After the timing attack by
Kocher [30] on cryptographic protocols, many more similar
side channels have been discovered. In the case of timing
attacks, the variable time needed for executing instructions
based on the (secret) input leads to leakage [31]. Once the
attacker observes the timing information, they can deduce
(part of) the secret input.

Goodspeed [32] reported an example of a start-to-end
timing attack on the MSP430. The serial bootstrap loader
(BSL) is vulnerable due to unbalanced branches in its
password comparison routine. More specifically, incorrect
bytes take two clock cycles longer to process than correct
ones. By observing the start-to-end timing of the BSL, an
attacker can deduce the correct password byte-by-byte. This
reduces the search space and required time significantly.
After breaking the BSL password, attackers can read out
or flash malicious firmware on the device.

Nemesis. The first microarchitectural side-channel attack
on low-end Sancus microcontrollers was Nemesis [33], a
timing attack that uses interrupt logic to leak information.
Sancus, like most processors, executes instructions over
multiple cycles. As interrupts are only triggered after

TABLE 1. TIMING LEAKAGE IN THE HARDWARE-SOFTWARE STACK.

System Library == operator Hardware

VRASED+, RATA, ACFA, TRAIN é
VatiCAN é
LEIA é
VulCAN é
Sancus, Authentic Execution é é

instruction retirement, an attacker can measure the time
it takes for the current instruction to finish executing
by measuring interrupt latency. Non-linear programs and
microarchitecturally unbalanced branches are vulnerable
to this attack.

Direct Memory Access. Another microarchitectural side-
channel attack on low-end microcontrollers uses direct
memory access (DMA) and the shared memory buses to
leak information [34], [35]. While DMA accesses cannot
directly access the code or data in enclaves, their timing
can leak information about the enclave’s memory activity.
A DMA-capable peripheral can probe the memory bus
and detect contention with the enclave by measuring the
latency of the DMA requests. Similar to the Nemesis attack,
non-linear programs and microarchitecturally unbalanced
branches are vulnerable to this attack.

Existing Mitigations. Most existing mitigations against
these timing attacks use software modifications. Winderix
et al. [36] and Bognar et al. [37] proposed mitigations
against the Nemesis and the DMA contention attacks,
respectively. These mitigations use compiler-inserted in-
structions to balance vulnerable branches to exhibit the
same leakage, regardless of their outcome. Given that these
mitigations balance branches, they also mitigate against
simpler start-to-end timing attacks that exploit unbalanced
secret-dependent branches such as the BSL attack [32]. An
orthogonal proposal masks the Nemesis interrupt-latency
leakage directly in hardware [38].

3. Leakage in the Hardware-Software Stack

In the following, we demonstrate that even on low-end
microcontrollers, subtle deviations in enclave execution
time can be exploited to break otherwise sound crypto-
graphic authenticity and integrity guarantees. To this end,
we systematically investigate the timing leakage in different
layers of the hardware-software stack. Table 1 summarizes
the systems we analyze and the non-constant-time behavior
we observed in the hardware-software stack.

Threat Model. The only capability we require for our
attacks is running untrusted code on the device, which is
in the threat model of all systems we analyze. In addition,
(open)MSP430 has a software-accessible cycle-accurate
timer, suitable for measuring precise timing differences.

3.1. Standard Library Functions

We start by analyzing the security of the C and C++
standard libraries provided to developers to improve the
ease of development. These libraries are understandably
optimized for performance rather than security. Low-end



1 int secure_memcmp(const uint8_t *s1, const
uint8_t *s2, int size) {

2 int res = 0; int first = 1;
3 for (int i = 0; i < size; i++) {
4 if (first == 1 && s1[i] > s2[i]) {
5 res = 1; first = 0;
6 } else if (first == 1 && s1[i] < s2[i]) {
7 res = -1; first = 0;
8 }
9 }

10 return res;
11 }

Listing 1. Non-constant-time secure_memcmp function used in
VRASED+ [2] and derived architectures [19], [22], [23].

embedded devices, often optimized for energy efficiency,
rely on these libraries and their performant functions.
Standard library functions like memcmp or std::equal
halt the memory comparison upon finding a difference for
performance reasons, creating a clear timing side channel.

Plain memcmp. Our analysis of open-source TEE research
prototypes reveals widespread use of plain memcmp or
std::equal calls. First, the aforementioned authentic
execution framework [12] uses a C++ library [39] that
implements the SpongeWrap authenticated encryption with
associated data primitive and uses std::equal for
the comparison of tags. Due to this non-constant-time
comparison, attackers can linearly brute-force the tag one
byte at a time. While the Sancus implementation uses
direct hardware support for SpongeWrap (cf. Section 3.3),
the non-constant-time C++ library is used in the Intel SGX
and Arm TrustZone implementations. Crucially, this would
allow reliable exploitation using the SGX-Step [40] single-
stepping framework to deterministically count the number
of instructions and, hence, the number of correct tag bytes
when comparing computed and expected tags. Finally, we
investigated the open-source VatiCAN [14] automotive
authentication library, which similarly uses the C function
memcmp to compare the tags in its authentication protocol,
making it vulnerable to timing attacks.

Secure memcmp. Prior work [34] demonstrated a start-to-
end timing leak in VRASED+’s authentication protocol [2],
which used a plain, non-constant-time memcmp function.
In response, the VRASED+ authentication code [41] was
changed to use a custom secure_memcmp function that
does not terminate early on a byte mismatch, as shown in
Listing 1. Crucially, we found that the new implementation
is still vulnerable to a timing attack, highlighting the
non-triviality of writing constant-time code. The custom
secure_memcmp implementation even allows attackers
to improve linear brute-force attacks using binary search,
as detailed in Appendix A (which also includes the
compiled assembly code for completeness). Currently, this
secure_memcmp function is used in the provably secure
RATA [19], ACFA [22] and TRAIN [23] hardware-software
co-designs, where it may introduce application-specific
security or availability concerns.

3.2. Compiler Analysis

Our second finding is that compilers for low-end micro-
controllers can introduce timing leakage when comparing

1 cmp.w 6(r1), r12
2 jne .L1
3 cmp.w r9, r13
4 jne .L1

Listing 2. Primitive data-type comparison of two 64-bit integers compiled
using MSP430 gcc v14.2.0.

1 xor.w 10(r4), r15
2 xor.w 6(r4), r13
3 bis.w r15, r13
4 xor.w 8(r4), r14
5 xor.w 4(r4), r12
6 bis.w r14, r12
7 bis.w r13, r12
8 cmp.w #0, r12
9 jne .LBB0_2

Listing 3. Primitive data-type comparison of two 64-bit integers compiled
using sancus-cc based on LLVM/clang v4.0.1.

values of primitive C data types. Specifically, we found
that for equality and inequality comparisons (==, !=) on
uint32_t or uint64_t integer values that exceed the
word size of the target system, the compiler may introduce
repeated assembly comparisons on 8- or 16-bit word-sized
chucks of the data with early exit jumps.

For instance, consider the code (uint64_t) a ==
(uint64_t) b, which performs a comparison between
two 64-bit integers. When compiled using a modern
MSP430 gcc v14.2.0 with space optimizations (-Os),
the code will be compiled into non-constant-time assembly
code, shown in Listing 2. Other recent versions and
optimization levels of the compiler create similar results.
Notably, the sancus-cc compiler bundled with Sancus,
based on an outdated version of LLVM/clang v4.0.1,
does not exhibit a timing leakage. As shown in Listing 3,
this code employs a linear chain of repeated xor instruc-
tions to perform the comparison, always checking the full
64-bit integer. Appendix B includes compiled assembly
code for different compiler versions and optimization levels
for popular target architectures, summarized in Table 2.
Notably, these results show that even on 32-bit platforms
such leakage can occur when comparing 64-bit numbers.

We found that both LEIA [15] and VulCAN [13] use
uint64_t primitive data types to compare the computed,
secret-dependent and the received, attacker-provided MAC
values, using simple C equality (==) or inequality (!=)
operators. This makes enclaves using these automotive
authentication libraries vulnerable to the timing attacks
described above, depending on the exact compiler version
and optimization levels used.

3.3. Hardware Timing Vulnerability

Finally, even at the level of the hardware itself, timing
vulnerabilities can be found. In the following, we demon-
strate the existence of a subtle early-out comparison flaw
in the FSM hardware logic implementing authenticated
encryption for Sancus. This analysis is followed by a
systematic investigation of the impact on different crypto-
graphic primitives in different versions of Sancus and an
end-to-end attack on the authentic execution framework.

Timing Leak. The cryptographic unit of Sancus is built
using an FSM in hardware. This FSM controls the crypto-



TABLE 2. NON-CONSTANT-TIME DATA TYPE COMPARISONS.

Compiler Word size uint16 t uint32 t uint64 t

MSP430 gcc v14.2.0 16 é é
sancus-cc (LLVM v4.0.1) 16
RISC-V gcc v14.2.0 32 é
MIPS (el) gcc v14.2.0 32 é
x86 MSVC v19 32 é

Figure 1. Part of the cryptographic FSM responsible for comparing tags.
The first state is VERIFY_TAG on the top left.

graphic unit while the SpongeWrap [27] construction is
used for the actual cryptographic operations. Moreover, the
FSM checks the correctness of authentication tags (either
MACs or hashes) provided by the programmer against the
tags it computes. These checks are conducted one 16-bit
word at a time, as shown in Figure 1, where comparison
is aborted on the first word mismatch.

This non-constant-time FSM for tag verification is
embedded in the hardware logic for several cryptographic
primitives in Sancus. However, not every timing difference
can lead to a security violation. Table 3 summarizes the
impact of the timing side channel on the confidentiality,
integrity, and availability guarantees provided by different
Sancus versions. Most importantly, Sancus 2.0 [11] added
support for authenticated encryption with associated data.
Thus, in this version, the timing variations in the unwrap
authenticated decryption primitive may allow attackers to
perform a linear brute-force attack on the expected MACs
for attacker-chosen ciphertexts and associated plaintext
data. Notably, we found that the behavior of the verify
primitive for local attestation was changed from using
MACs in Sancus 1.0 [24] to hashes in Sancus 2.0 [11],
making the observed timing variations for verify in
Sancus 2.0 secret-independent. However, since Sancus 2.0
supports the confidential loading of encrypted enclaves,
the enable instruction in this version is susceptible to
timing leakage. This vulnerability enables attackers to
brute-force the MAC values for encrypted Sancus 2.0
enclaves, allowing them to bypass availability and forcibly
load enclaves that would decrypt to garbled plaintext.

Proof-of-Concept. We developed an elementary Sancus en-
clave that takes an encrypted message and a corresponding
tag as inputs and uses the unwrap primitive to authenticate
the incoming message and decrypt its associated data. By
accurately timing the execution of the vulnerable enclave,
the attacker can deduce the number of correct words in the
tag. The attacker can, therefore, guess the correct tag word
by word, reducing the search space from an exponential
to a linear effort. Brute-forcing the correct tag allows the

TABLE 3. SANCUS VERSIONS AFFECTED BY THE TAG COMPARISON
LEAK (C=CONFIDENTIALITY; I=INTEGRITY; A=AVAILABILITY).

Primitive C I A

sancus_unwrap – 2.0 –
sancus_verify – 1.0 1.0
sancus_enable – 2.0 2.0

attacker to pass off malicious messages to the enclave as
authentic, but not to learn the contents of the decrypted data.
Depending on the application, such as when the decrypted
data represents a boolean activation flag, injecting such
garbled messages may be sufficient for a practical attack.

End-to-End Attack. The authentic execution frame-
work [11], [12], discussed in Section 2.2, has an entry
point for handling input data. The entry point is called
HandleInput (see Listing 8 in Appendix C) and is
responsible for decrypting the payload and calling a
corresponding callback function to process it. In the
framework’s Sancus implementation, the cryptographic
unit and its vulnerable unwrap primitive are used to
decrypt the payload and check the tag.

An attacker only needs to know the public connection
identifier and have untrusted code running on the same
node, which is within the attacker model of the framework.
In our attack, an attacker can construct a payload consisting
of a random ciphertext and a tag. As before, the attacker can
measure the time it takes to execute the HandleInput
function. Based on the timing, the correct tag can be
deduced, which allows the attacker to pass the message
off as authentic, breaking the main security guarantee of
the framework. We successfully reproduced this attack
using the open-source artifacts of the authentic execution
framework for Sancus.

4. Discussion and Mitigations

Timing attacks have been known for many years. Our
findings provide further evidence that low-end TEEs and
systems building on them are just as impacted by these
vulnerabilities as high-end systems, despite the simpler
hardware implementations. We argue further that the
observations made in this paper can likely be extended to
other low-end TEEs, since time is a shared resource on
almost any programmable device.

To understand and mitigate the full impact of the
side channels, developers or tools need to be aware
of the timing behavior of the whole hardware-software
stack. First, care should be taken when using standard
libraries since they are optimized for performance and not
security. Our examples show that even hand-written library
functions such as the investigated secure_memcmp can
be vulnerable to subtle timing leaks. Furthermore, we
showed that compilers, especially when targeting lower-
end platforms, can introduce unexpected timing leaks even
when comparing primitive data types. Finally, even the
hardware can hide timing leakage that is not detectable
just by examining the program code. While in this paper
we demonstrated vulnerabilities in these different layers in
low-end trusted execution settings, future research could
extend the scope to high-end TEEs.



4.1. Using Formal Methods

Formal methods are a powerful tool to increase confi-
dence in the security of a system. However, they tend to
defer side-channel-aware modeling for future work. Based
on our results, we argue that this side-channel analysis
should be conducted either as part of the formalization or
as thorough inductive testing [34].

Notably, several of the vulnerabilities we demonstrated
impact systems with a formal security model. The timing-
dependent secure_memcmp function is used in formally
verified attestation architectures [2], [19], [22], [23]. Fur-
thermore, the high-level formal model for the LEIA [15]
authentication library could not anticipate the concealed
low-level timing effect introduced by the compiler. Fi-
nally, the hardware-level timing variations we exploit to
bypass authenticity guarantees are completely invisible
in the application code, the authentic execution compiler
framework, and its high-level formal definition [17].

4.2. Software Mitigations

Mitigating the timing leakage introduced by the com-
piler or insecure libraries should be fixed in software. In all
cases, comparing secret-dependent values should always
happen in a constant-time fashion, for example using XOR
instructions [42], as done by the sancus-cc compiler.
To validate whether the compiler introduced any timing
leakage, binary analysis tools can be used [43].

Mitigating the timing-dependent cryptographic unit in
Sancus from software is more difficult, but might be neces-
sary on legacy hardware. A possible solution is to time the
execution of the cryptographic unit from the enclave and
add a delay if the execution time is too short. This way, the
execution time of an entry point will not differ based on the
cryptographic operation. However, this mitigation needs
to ensure that this software-induced padding cannot be
detected and differentiated from hardware-induced delays
by other means, such as interrupts [33] or the enclave’s
memory activity [34].

4.3. Hardware Mitigation

To patch the timing channel in the cryptographic
hardware unit, we implement and evaluate two, slightly
different, hardware mitigations. To eliminate the leakage,
the part of the state machine responsible for the verification
needs to be altered in such a way that it always takes the
same amount of time to verify the tag. There are two
possible ways to achieve this: adding an extra register to
keep track of the result of the comparison or adding extra
states. A graphical representation of the modified FSMs
for the two mitigations is shown in Appendix D.

Extra Register. By adding a register to the cryptographic
unit, the state machine can keep track of whether an
incorrect word was found during the iterative checks. This
way, the state machine can continue with the verification
even if an incorrect word is found. Finally, when all words
of the tag have been checked, the state machine can indicate
whether the verification was successful or not based on
this stored register.

TABLE 4. COSTS OF THE PROPOSED HARDWARE MITIGATIONS IN
LOOKUP TABLES (LUTS) AND FLIP-FLOPS (FFS), FOR THE ENTIRE

SANCUS CORE AND THE CRYPTOGRAPHIC UNIT INDIVIDUALLY.

Total Crypto unit

Architecture LUT FF LUT FF

Original 5,427 2,240 1,436 592
Extra register 5,407 2,241 1,414 593
Extra states 5,457 2,240 1,482 592

Extra States. Another way to mitigate the attack is by
adding extra states to the state machine. These dummy
states delay the final result if incorrect words are found.
They simulate the normal working of the state machine,
leading to a constant execution time, but eventually in-
dicate failure. Extra changes are needed in the original
cryptographic unit for this solution, such as increasing the
size of the buffer that keeps track of the current state.

Comparison. Both mitigations have advantages and disad-
vantages. To better evaluate the effects of the changes, we
compared the hardware cost of the original implementation
and the two mitigations. We obtained these measurements
by using Vivado 2024.2 to synthesize the designs for the
Kintex UltraScale+ FPGA. The results are shown in Table 4.
All architectures are evaluated based on the total number
of lookup tables (LUTs) and flip-flops (FFs) utilized in the
complete implementation, including the cryptographic unit,
as well as for the cryptographic unit alone. Comparing
the total implementation is necessary, as changes in the
cryptographic unit might have effects on other parts of the
design.

Based on these results, we favor the solution of adding
an extra register. It requires fewer LUTs compared to
the mitigation with extra states, and even fewer than
the original implementation, likely thanks to the reduced
complexity of the state machine. In terms of FFs, the extra
register mitigation requires one more FF compared to the
original implementation and the extra states architecture;
this is the FF used to store the result of the comparison.

5. Conclusion

This paper highlighted the importance of consider-
ing side-channel attacks in every layer of the hardware-
software stack. Our comprehensive side-channel analysis
uncovered the use of non-constant-time functions from
the C and C++ standard libraries and even non-constant-
time custom comparison functions in multiple embedded
TEE research prototypes. Moreover, we demonstrated that
compilers for low-end microcontrollers can introduce tim-
ing vulnerabilities in the assembly code, even for equality
checks on primitive data types. We further showed that even
the hardware can harbor subtle timing vulnerabilities, as
evidenced by a flaw in the cryptographic unit of the Sancus
TEE. Our proposed hardware and software mitigations aim
to address these vulnerabilities with minimal performance
impact. Finally, we argue that formal methods should be
combined with thorough side-channel analysis to provide
strong security guarantees.
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Appendix A.
secure_memcmp Attack

The secure_memcmp function (Listing 1) is used to
compare two buffers. However, unlike the name suggests,
this function is timing-dependent. In addition, an attacker
can exploit this timing dependency to improve linear brute-
force attacks using binary search, since a guessed byte that
is smaller than the correct byte will take longer to compare
than a guessed byte that is bigger than the correct one.
Table 5 shows the execution time of the secure_memcmp
function for a partially correct buffer, as measured on the
openMSP430 core for the compiled assembly code in
Listing 4. Note that different compilers and optimization
levels generate similarly vulnerable assembly code for the
secure_memcmp function of Listing 1.

Appendix B.
Compiler Analysis Code

We provide two assembly code snippets showing how
comparison code at the C level (Listing 5) can be compiled
in timing-dependent and timing-independent ways. The
vulnerable code is compiled using MSP430 gcc 14.2.0
(Listing 6) and optimized for space usage (-Os), while the
safe code is compiled using sancus-cc (Listing 7).

Appendix C.
HandleInput Authentic Execution Code

Listing 8 provides the HandleInput code inserted
by the Sancus compiler to transparently handle authentic-
execution entry points as discussed in Section 3.3. The
vulnerable sancus_unwrap call is on line 29.

Appendix D.
Hardware Mitigations FSMs

The modified FSMs for the two hardware mitigations
discussed in Section 4.3 are shown in Figures 2 and 3.

1 secure_memcmp:
2 push.w r4
3 mov.w r1, r4
4 push.w r11
5 push.w r10
6 push.w r9
7 mov.w #0, r12
8 cmp.w #1, r13
9 jl .LBB0_9

10 mov.w #1, r11
11 .LBB0_2:
12 cmp.w #1, r11
13 jne .LBB0_8
14 mov.b 0(r14), r11
15 mov.b 0(r15), r10
16 cmp.b r10, r11
17 jhs .LBB0_5
18 mov.w #0, r11
19 mov.w #1, r12
20 jmp .LBB0_8
21 .LBB0_5:
22 mov.w #-1, r9
23 cmp.b r11, r10
24 jlo .LBB0_7
25 mov.w r12, r9
26 .LBB0_7:
27 cmp.b r11, r10
28 mov.w r2, r11
29 and.w #1, r11
30 mov.w r9, r12
31 .LBB0_8:
32 add.w #1, r14
33 add.w #1, r15
34 add.w #-1, r13
35 cmp.w #0, r13
36 jne .LBB0_2
37 .LBB0_9:
38 mov.w r12, r15
39 pop.w r9
40 pop.w r10
41 pop.w r11
42 pop.w r4
43 ret

Listing 4. Listing 1 compiled using sancus-cc based on LLVM/clang
v4.0.1 and optimized for space usage (-Os).

1 void cmp_secret64(uint64_t a, uint64_t b) {
2 if (a == b) helper_func();
3 }
4 void cmp_secret32(uint32_t a, uint32_t b) {
5 if (a == b) helper_func();
6 }
7 void cmp_secret16(uint16_t a, uint16_t b) {
8 if (a == b) helper_func();
9 }

Listing 5. Code snippet comparing integers of different sizes.

Figure 2. Cryptographic FSM with extra states to delay the final result.
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1 cmp_secret64:
2 pushm.w #2, r10
3 mov.w 8(r1), r9
4 mov.w 10(r1), r10
5 mov.w 12(r1), r11
6 cmp.w 6(r1), r12
7 jne .L1
8 cmp.w r9, r13
9 jne .L1

10 cmp.w r10, r14
11 jne .L1
12 cmp.w r11, r15
13 jne .L1
14 call #helper_func
15 .L1:
16 popm.w #2, r10
17 ret
18 cmp_secret32:
19 cmp.w r14, r12
20 jne .L3
21 cmp.w r15, r13
22 jne .L3
23 call #helper_func
24 .L3:
25 ret
26 cmp_secret16:
27 cmp.w r13, r12
28 jne .L5
29 call #helper_func
30 .L5:
31 ret

Listing 6. Listing 5 compiled using MSP430 gcc 14.2.0 and optimized
for space usage (-Os).

1 cmp_secret64:
2 push.w r4
3 mov.w r1, r4
4 xor.w 10(r4), r15
5 xor.w 6(r4), r13
6 bis.w r15, r13
7 xor.w 8(r4), r14
8 xor.w 4(r4), r12
9 bis.w r14, r12

10 bis.w r13, r12
11 cmp.w #0, r12
12 jne .LBB0_2
13 call #helper_func
14 .LBB0_2:
15 pop.w r4
16 ret
17 cmp_secret32:
18 push.w r4
19 mov.w r1, r4
20 xor.w r13, r15
21 xor.w r12, r14
22 bis.w r15, r14
23 cmp.w #0, r14
24 jne .LBB1_2
25 call #helper_func
26 .LBB1_2:
27 pop.w r4
28 ret
29 cmp_secret16:
30 push.w r4
31 mov.w r1, r4
32 cmp.w r14, r15
33 jne .LBB2_2
34 call #helper_func
35 .LBB2_2:
36 pop.w r4
37 ret

Listing 7. Listing 5 compiled using sancus-cc based on LLVM/clang
v4.0.1.

1 uint16_t SM_ENTRY(SM_NAME) __sm_handle_input(
uint16_t conn_idx,

2 const void* payload, size_t len)
3 {
4 // sanitize input buffer
5 if(!sancus_is_outside_sm(SM_NAME, (void *)

payload, len)) {
6 return BufferInsideSM;
7 }
8

9 // check correctness of other parameters
10 if(len < SANCUS_TAG_SIZE || conn_idx >=

__sm_num_connections) {
11 return IllegalParameters;
12 }
13

14 Connection *conn = &__sm_io_connections[
conn_idx];

15

16 // check if io_id is a valid input ID
17 if (conn->io_id >= SM_NUM_INPUTS) {
18 return IllegalConnection;
19 }
20

21 // associated data only contains the nonce,
22 // therefore we can use this trick to build
23 // the array fastly (i.e. by swapping the
24 // bytes)
25 const uint16_t nonce_rev = conn->nonce << 8

| conn->nonce >> 8;
26 const size_t data_len = len -

SANCUS_TAG_SIZE;
27 const uint8_t* cipher = payload;
28 const uint8_t* tag = cipher + data_len;
29 uint8_t* input_buffer = alloca(data_len);
30

31 if (sancus_unwrap_with_key(conn->key, &
nonce_rev, sizeof(nonce_rev),

32 cipher, data_len, tag, input_buffer)) {
33 conn->nonce++;
34 __sm_input_callbacks[conn->io_id](

input_buffer, data_len);
35 return Ok;
36 }
37

38 // here only if decryption fails
39 return CryptoError;
40 }

Listing 8. HandleInput entry point generated by Sancus authentic
execution framework.

Figure 3. Cryptographic FSM with an extra register to keep track of the
result of the comparison.
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