DEPARTMENT OF
KU LEUVEN COMPUTER SCIENCE

ShowTime: Amplifying Arbitrary CPU Timing Side Channels

Antoon Purnal?, Marton Bognar?, Frank Piessens?, Ingrid Verbauwhede?
1 imec-COSIC, KU Leuven, Belgium; 2 imec-DistriNet, KU Leuven, Belgium
marton.bognar@kuleuven.be

Results at a glance

Single-shot amplification up to seconds:
®* Human timers: classifying a cache hit or miss with the naked eye (med. 99% success rate)

® Eviction set construction using the Unix Epoch (even with 10 s granularity)

The ShowTime framework

Research question: is restricting timers a good countermeasure against timing attacks?

Goal: expose secret leakage from anywhere in the CPU to coarse-grained timers
® Realistic attacker model: cross-core, no hugepages or fixed CPU frequency

® Conditions for the leakage:
Visible: the target component is observable by the attacker
Measurable: leakage is strong enough to be measured by the attacker

Execution Time

ShowTime code routines:
® Convert: transform leakage from one microarchitectural component to another

Initial leakage might be stateless or local to the victim
® Amplify: increase the granularity of the leakage to measurable levels

* Timers are increasingly restricted, e.g., in browsers
Victim Attacker

1 ms

1 ps 10pus 100pus 1ms 10ms 100ms 1s

Timer Granularity

+
pL

Convert

Eviction set construction in the browser:
® Using the default Chrome isolation settings, performance.now() granularity of 100 us

® Median runtime 25 seconds, successful in 70% of cases

Measuring cross-core port contention:
® Capturing a stateless timing difference of less than 20 ns with a coarse-grained timer

...and more!

L1 PLRU amplifier:

® Based on leaky.page
Exploits the replacement policy of the L1 cache

Improved amplification rate from 1.3x to 2x CO nvert
Improved granularity from 500 us to 5 ms

Generalized to detect reordering, back-invalidation LLC back-invalidation:

[J
([]
[J
([]
® An eviction from the LLC results in an eviction in the L1/L2 caches

) ®C

@ Time to order:
® Exploits out-of-order execution to encode a timing difference in the cache

d = evict(Ah)

BABCBDBA:-- BABCBDBA - 1 = sacron delay (@ 2 = fired dotay(@
d2 = prefetchNTA(A -~ d42)

dl = load(A ~ di1)

all L1 hits many L1 misses load(B ~ di ~ d2)

Architectural reordering:

PrefetchNTA amplifier: ® Encodes a timing difference in an architectural value through a race condition

® Based on the prefetchNTA x86 instruction - -
* Marks the loaded address as the eviction candidate in the cache —— [Invoke H —— Hwﬁtel]
|

® 10x amplification rate
® 350 ms granularity) — <

x @ @ @ @ Thread 2 —»[Fixed delay]—»[Write 2]

A not cached

I - rnEN-

Paper: https://mici.hu/papers/purnal23showtime.pdf
GitHub: https://github.com/KULeuven-COSIC/ShowTime

Architectural reordering

o M,y -?z KX

prefetchNTA(A)
prefetchNTA(B) o CPU frequency Eviction set construction

o

KU Leuven

Department of Computer Science
Celestijnenlaan 200A box 2402
3001 Leuven, Belgium

. ®

	Slide 1

