
Further reading
Paper: https://mici.hu/papers/purnal23showtime.pdf
GitHub: https://github.com/KULeuven-COSIC/ShowTime

Results at a glance

Amplify
L1 PLRU amplifier:
 Based on leaky.page
 Exploits the replacement policy of the L1 cache
 Improved amplification rate from 1.3x to 2x
 Improved granularity from 500 us to 5 ms
 Generalized to detect reordering, back-invalidation

PrefetchNTA amplifier:
 Based on the prefetchNTA x86 instruction

 Marks the loaded address as the eviction candidate in the cache
 10x amplification rate
 350 ms granularity

ShowTime: Amplifying Arbitrary CPU Timing Side Channels
Antoon Purnal¹, Marton Bognar², Frank Piessens², Ingrid Verbauwhede¹

¹ imec-COSIC, KU Leuven, Belgium; ² imec-DistriNet, KU Leuven, Belgium

marton.bognar@kuleuven.be

The ShowTime framework

Convert

Research question: is restricting timers a good countermeasure against timing attacks?

Goal: expose secret leakage from anywhere in the CPU to coarse-grained timers
 Realistic attacker model: cross-core, no hugepages or fixed CPU frequency
 Conditions for the leakage:

 Visible: the target component is observable by the attacker
 Measurable: leakage is strong enough to be measured by the attacker

ShowTime code routines:
 Convert: transform leakage from one microarchitectural component to another

 Initial leakage might be stateless or local to the victim
 Amplify: increase the granularity of the leakage to measurable levels

 Timers are increasingly restricted, e.g., in browsers

Single-shot amplification up to seconds:
 Human timers: classifying a cache hit or miss with the naked eye (med. 99% success rate)
 Eviction set construction using the Unix Epoch (even with 10 s granularity)

Eviction set construction in the browser:
 Using the default Chrome isolation settings, performance.now() granularity of 100 us
 Median runtime 25 seconds, successful in 70% of cases

Measuring cross-core port contention:
 Capturing a stateless timing difference of less than 20 ns with a coarse-grained timer

...and more!

LLC back-invalidation:
 An eviction from the LLC results in an eviction in the L1/L2 caches

Time to order:
 Exploits out-of-order execution to encode a timing difference in the cache

 d = evict(A)
 // first leg // second leg
 d1 = secret-delay(d) d2 = fixed-delay(d)
 d1 = load(A ^ d1) d2 = prefetchNTA(A ^ d2)

 load(B ^ d1 ^ d2)

Architectural reordering:
 Encodes a timing difference in an architectural value through a race condition

	Slide 1

