ShowTime: Amplifying Arbitrary CPU Timing Side Channels

Antoon Purnal
imec-COSIC, KU Leuven

Marton Bognar
imec-DistriNet, KU Leuven

ABSTRACT

Microarchitectural attacks typically rely on precise timing sources
to uncover short-lived secret-dependent activity in the processor.
In response, many browsers and even CPU vendors restrict access
to fine-grained timers. While some attacks are still possible, seve-
ral state-of-the-art microarchitectural attack vectors are actively
hindered or even eliminated by these restrictions.

This paper proposes ShowTime, a general framework to ex-
pose arbitrary microarchitectural timing channels to coarse-grained
timers. ShowTime consists of CONVERT routines, transforming mi-
croarchitectural leakage from one type to another, and AMPLIFY
routines, inflating the timing difference of a single microarchitec-
tural event to make it distinguishable with crude sources of time.

We contribute several CONVERT and AMPLIFY routines and show
how to combine them into powerful attack primitives. We demon-
strate how a single cache event can be amplified so that even the
human eye can classify it with 98% accuracy and how stateless time
differences as minuscule as 20 ns can be captured, converted, and
amplified in a single observation. Additionally, we generate cache
eviction sets, both in real-world restricted browser environments
and natively using timers with precisions ranging from microsec-
onds to seconds. Our findings imply that timer restrictions alone,
even when ruthlessly implemented beyond practical limits, provide
insufficient protection against CPU timing attacks.

CCS CONCEPTS

« Security and privacy — Software and application security;
Systems security; Browser security.

KEYWORDS

CPU side channel; microarchitecture; restricted timers; JavaScript

1 INTRODUCTION

In modern computing systems, programs may affect the execu-
tion of other programs through incidental interference in shared
hardware components (e.g., caches or computational units). Such
interference, predictably, affects the performance of software on
multi-tenant systems. However, sharing the processor hardware
(i-e., the processor microarchitecture) also carries security implica-
tions. Indeed, by measuring how long it takes to execute specific
actions (i.e., a timing side channel), malicious programs can deter-
mine the usage patterns of specific microarchitectural components.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AsiaCCS °23, July 10-14, 2023, Melbourne, Australia

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Frank Piessens
imec-DistriNet, KU Leuven

Ingrid Verbauwhede
imec-COSIC, KU Leuven

Therefore, any program with secret-dependent resource utilization
unintentionally encodes its secrets in the microarchitecture, expos-
ing it to co-located adversaries. Several attacks manage to exploit
this behavior, revealing cryptographic keys [6, 26, 46, 77], operating
system secrets [19, 21, 25, 29], or user input [23, 45, 53].

Microarchitectural leakage is often categorized into stateful chan-
nels, whose effect on the microarchitecture endures for some time
after the secret-dependent execution, and stateless channels, for
which the influence on the microarchitecture disappears as the
secret-dependent instructions finish executing. Initially, stateful
attacks (e.g., [18, 28, 40, 46, 77]) attracted more attention as they
allow the side-channel measurement to happen sometime after the
secret-dependent activity. Recently, however, stateless side-channel
attacks were also proven to be powerful [4, 7, 12, 47, 69, 78, 79].

Microarchitectural leakage by itself, whether it be stateful or
stateless, produces only minuscule timing differences (e.g., 10-
100 ns). Therefore, the lion’s share of timing side-channel attacks
rely on high-precision sources of time, either by consulting exist-
ing timer interfaces (e.g., [8, 15, 18, 40, 45, 77]) or by producing
fine-grained and monotonically increasing values that correlate
with time (e.g., [19, 57, 58]). In response, some platforms disable
unprivileged access to high-precision timers [36]. Even stronger,
there have been academic proposals [35, 41, 64] to orchestrate
computing environments that eliminate all high-precision tim-
ing sources. Similar measures are currently deployed in modern
browsers [16, 17, 44, 68, 72].

Without fine-grained timers, one option is to repeatedly trigger
the leak (multi-shot amplification) [42, 54, 59, 73]. However, this
requires a deterministic repetition of the leak, which is not generally
possible. Moreover, timing differences typically accumulate slowly.
In contrast, the website leaky.page [56] performs a sequence of
memory accesses that, conditioned on the presence of a single
target memory access (single-shot amplification), accrue measurable
timing differences (e.g., 100 ps). While powerful, this technique can
only expose the presence of same-process memory accesses.

At this time, it is unclear whether several state-of-the-art mi-
croarchitectural attacks, e.g., those that obtain privilege escala-
tion [13, 22, 33] or extract secrets across processor cores [40, 45, 77],
still pose a threat without high-precision timers. A key unsolved
problem is finding eviction sets, i.e., sets of memory addresses con-
tending for capacity in the last-level cache (LLC) [40, 50, 51, 67, 76].
Moreover, stateless channels appear challenging to amplify, as they
are inherently short-lived. Therefore, we ask:

Can cross-core side-channel attacks be mounted with low-precision
timers? Can stateless side channels be amplified at all? What are the
limits to single-shot microarchitectural amplification?

In this paper, we show that microarchitectural attacks are not
foundationally thwarted by restricted timing sources. We present
ShowTime, a generic framework to produce considerable timing
differences from fine-grained leaks, regardless of their source.

ShowTime composes two phases of independent interest. First,
the CoNVERT phase transforms an initial microarchitectural leak
to make it amenable to enter the second phase, AMPLIFY, which
produces a large timing difference depending on its input state.

For the AMPLIFY phase of ShowTime, we develop novel instruc-
tion sequences that exhibit considerable differences in runtime,
depending on a single microarchitectural state difference. First, we
generalize the leaky . page amplifier [56] for use in ShowTime, per-
mitting the single-shot amplification of additional events, such as
differences in load order or cache line invalidations. We show how
to increase its amplification ratio, i.e., the ratio between slow and
fast executions of the amplifier, from 1.3 to 2.3. Additionally, we de-
velop robustness measures to increase the maximal time difference
it can reliably produce, from 500 ps to 5 ms. Second, we discover
a powerful single-shot amplifier for adversaries with native code
execution. Its amplification ratio exceeds 10, meaning that it takes,
e.g., less than 1.1 ms to produce a difference of 1 ms. Due to its
unprecedented robustness, it can produce timing differences far
beyond any timer coarseness imposable in practice.

For the CONVERT phase of ShowTime, we contribute several con-
version techniques, relying on well-known CPU behavior like out-
of-order execution, cache line back-invalidation, and thread-level
parallelism. They make it possible to convert (single-shot, poten-
tially cross-core, potentially stateless) microarchitectural leaks to
make them attacker-visible, attacker-amplifiable, and both.

To show how ShowTime fares with stateless leaks, we develop
a proof-of-concept attack to expose port contention on another
processor core through its delaying effect on following instruc-
tions. Though this secret-dependent delay does not exceed 20 ns,
ShowTime can capture, convert and amplify its presence or absence.
We also demonstrate that ShowTime can be used to reveal infor-
mation on the CPU frequency at a given point in time, which is an
inherently stateless microarchitectural context that has recently
been shown to produce severe leakage [39, 70].

Exploring the limits of microarchitectural amplification, we find
that our strongest amplifier can generate time differences so enor-
mous that the human eye can classify a single initial cache hit or
miss with more than 98% accuracy. In addition, we find eviction
sets for the LLC using the Unix Epoch, an excessively crude "timer"
reflecting the number of seconds elapsed since January 1, 1970.

We also construct LLC eviction sets in JavaScript with a 100 ps
timer, which is the most restricted scenario in the latest Chrome
release. The median execution time is 25 s, for an accuracy of 70%.
These results show that the ShowTime convert-and-amplify strat-
egy is also successful from the browser, which is a restricted execu-
tion context where timers are already limited in practice.
Contributions. Our main contributions are the following:

- We provide a framework to expose fine-grained timing leaks
of arbitrary type to coarse-grained timing sources.

- We develop robust amplifiers capable of producing large time
differences from unique microarchitectural events.

- We show how to reliably convert activity in one microarchi-
tectural component into controlled activity in another.

- We evaluate ShowTime for cross-core stateless attacks, fre-
quency measurements, and eviction set construction.

We disclosed our findings to Intel and Google.

Availability. To facilitate the reproduction of our research, artifacts
are available at

https://github.com/KULeuven-COSIC/ShowTime

2 BACKGROUND

Cache Hierarchy. Modern processors consume and produce data
faster than main memory technology can provide and accept it. To
overcome this issue, processors feature a cache hierarchy; a series of
successively smaller and faster pieces of on-chip memory. Typically,
caches are implemented as a two-dimensional array of cache lines.
This array is indexed into sets, to which cache lines are mapped
based on their memory address. Lines mapped to the same set are
called congruent, and the number of congruent lines mapped to the
same set is the cache’s associativity (or its number of ways).

The cache hierarchy on Intel processors comprises three levels.
Each core has its own L1 and L2 cache, the two fastest and smallest
levels. The L3 or last-level cache (LLC) is shared between all CPU
cores. Most Intel LLCs abide by an inclusive policy, stating that all
cache lines in L1/L2 necessarily have a copy in the LLC.

In the event of a cache miss, i.e., the cache does not contain
the requested memory address, the next level cache is consulted,
cascading all the way to main memory in case the request triggers a
cache miss in all levels. To install the new line in the cache set, one
of its existing entries is selected to be replaced (or evicted), and the
state machine that governs this selection is the replacement policy.

Sometimes, the programmer or compiler may want to instruct the
processor to fetch specific data before it is used. On Intel processors,
several so-called prefetch instructions exist for this purpose.
Cache Attacks. The presence of a shared cache hierarchy implies
that processes affect each other’s runtime through competitive
use of the cache space. This introduces a timing side channel. For
instance, a malicious process occupying an entire cache set can
determine, by measuring the access latency of its own cache lines,
whether one of them was evicted by the activity of another process.
Such an attack is known as Prime+Probe [40, 46]. Recently, a more
precise version, Prime+Scope [51], was proposed, which concen-
trates the contention with the victim into a single cache line. A key
prerequisite for Prime+Probe-style techniques is to find eviction
sets, i.e., addresses that map to the same set in the target cache.
Other Microarchitectural Leakage. While the cache hierar-
chy has been the most prominent target for timing attacks, CPU
microarchitectures feature several other components that expose
processes to the metadata leakage of other processes. Any compo-
nent competitively shared between potential attacker and victim
processes can be the target of a timing attack. Some of these com-
ponents are core-private, e.g., L1 caches [46], execution ports [4, 7],
TLBs [18], and fetch/decode units [62], implying that an attacker
needs to obtain core-level co-location with their victim to mount
an attack. Other components, e.g., DRAM row buffers [49], and
on-chip interconnects [12, 47, 69], are competitively shared across
cores, relaxing the co-location requirements for the attacker.
Out-of-Order Execution. To maximally make use of available
hardware resources, modern processors implement out-of-order ex-
ecution. This feature exploits instruction-level parallelism, allowing
independent instructions to execute as soon as their operands are
available, instead of strictly adhering to the order specified by the

https://github.com/KULeuven-COSIC/ShowTime

Initial exposure Convert Amplify Measure

S H o V }—){UZZV"U'; MH py: M S

Figure 1: ShowTime framework.

program’s (inherently serial) software description. Out-of-order
execution itself may be a source of hardware vulnerabilities [38].

3 SHOWTIME
3.1 Threat Model

We consider an attacker with unprivileged code execution. The
only timing sources available to the attacker are coarse-grained
timers, i.e., their granularity (e.g., 5 ps, 100 s, or 100 ms) is several
orders of magnitude larger than the timing variations the attacker
intends to measure (e.g., 10 ns). We explicitly do not assume that
the attacker runs on the same CPU core as the victim, that huge
memory pages are available, or that the CPU frequency is fixed.

3.2 General Framework

Figure 1 shows the ShowTime cascade for a general microarchi-
tectural side-channel attack. The data flow starts from the initial
exposure of secret architectural data (S) to the microarchitectural
context (¢1). At the end, the attacker reconstructs the secret data
by measuring a transformed context. For this reconstruction to be
possible, the final context needs to have two properties:

e Visible (V): the leakage is present in a component shared with
the adversary or observable through an explicit interface [14].

e Measurable (M): the leakage is strong enough to be picked up by
the measurement source. Being measurable implies being visible.

ShowTime aims to achieve measurability for arbitrary initial ex-
posure types with CONVERT and AMPLIFY phases, which we now
describe briefly. In practice, some steps may be repeated, skipped,
or reordered.

3.2.1 Initial Exposure. The initial encoding of secret data into the
microarchitecture can be categorized according to different criteria:

e Visible (V) or invisible: the latter may be the case for leaks in
core-private resources such as execution ports [4, 7].

e Unintentional (in a side-channel attack), or intentional (in a covert
channel or a transient execution attack [31, 38]).

o Stateful or stateless, i.e., with persisting (stateful) or ephemeral
(stateless) interference in the microarchitectural context.

3.2.2 Convert. The CONVERT step translates exposure in one mi-
croarchitectural component into exposure in another. This can be
required for multiple reasons. If the initial exposure is not visible
(V), it can be transformed to a visible encoding in the microarchitec-
tural context. If the initial leakage is not measurable (M) and cannot
be directly amplified (e.g., it is stateless), it can first be transformed
into an amplifiable (e.g., more persistent [3, 5]) state.

Similar to the initial exposure, conversions can be unintentional
or intentional. Unintentional conversions can occur through gad-
gets in the victim code or implicitly through processor hardware
features (e.g., dynamic voltage and frequency scaling (DVFS) con-
verts power differences into frequency differences [70]).

3.2.3 Amplify. Leakage that is visible (V) but not measurable (M)
requires amplification before it can be decoded. An amplifier is a
piece of code whose execution time is deliberately made sensitive
to a specific difference in the microarchitectural context.

Prior work mostly focuses on constructing multi-shot amplifiers,
which repeatedly trigger an identical initial exposure [42, 54, 59, 73].
However, attackers cannot always force the victim to repeatedly ex-
ecute with the same inputs. Moreover, while existing amplification
techniques are theoretically capable of achieving arbitrary time
differences, it is unclear whether they remain applicable in practice
as timing sources get restricted even further, e.g., to 100 ms [63].

In this work, we focus on single-shot amplification. From here
on, amplifier and amplification refer to single-shot methods.

3.24 Measure. The final step in ShowTime is to read out the side-
channel information in the architectural domain to reconstruct (S’)
the secret (S). For timing side channels, the architectural value is
typically obtained by reading a monotonically increasing value
before and after executing the target code. This value can either
be readily accessible (e.g., rdtsc in x86 or performance.now() in
JavaScript), or implemented by the attacker [34, 55, 57, 58]. The
difference can then be thresholded to recover the initial secret.

Alternatively, the thresholding can also be a part of the mea-

surement, e.g., by testing whether the target executes slower or
faster compared to an action with a known execution time [60].
Other software-accessible measurement interfaces include hard-
ware transactional memory [14, 20], on-chip power consumption
monitors [37], and the CPU frequency [70] manager. However, such
direct interfaces can be or have been disabled [27] or weakened [37].
In this work, we focus on timing side channels.
Restrictions in Browsers. In response to Spectre [31], browsers
limit JavaScript features that can be correlated to the precise passage
of time, especially in combination with interacting with other web-
sites [16]. Websites can opt into these features by explicitly setting
two HTTP response headers, enabling cross-origin isolation.

In current versions of Chrome (> 92) [16] and Firefox (> 79) [43],
SharedArrayBuffer is one of these restricted features, as it can be
used for constructing a precise timer [57]. In Chrome, the granular-
ity of performance. now() is limited to 5 ps on isolated and 100 us
on non-isolated sites [16, 17, 68]. In Firefox [44] and Safari (We-
bKit) [72] performance.now() is further degraded to a precision
of 1 ms. Even before Spectre, the Tor Browser limited its precision
to 100 ms [63].

4 SINGLE-SHOT AMPLIFICATION

This paper studies single-shot amplifiers, i.e., unprivileged programs
whose execution time depends on a single difference in a microar-
chitectural context. Not relying on multiple victim code invocations
makes these amplifiers applicable in more attack scenarios.

Amplifier Quality. The capabilities of a single-shot amplifier can
be quantified by different metrics. Its amplification ratio (A > 1) de-
fines the ratio between the amplifier’s slow and fast execution times.
The maximal output timing difference A is the absolute difference
between the slow and fast times the amplifier can reliably produce.
As we will see, although some amplifiers are theoretically capable
of producing arbitrary timing differences, in practice they seem
to degrade when a specific timing difference is reached. Finally,

(1)
5 e

@
}@ ® @.@ @@ 0 @

®)

®

Figure 2: Amplifier based on the L1 replacement policy state.

the initial microarchitectural contexts the amplifier can capture
determines how widely applicable the amplifier is.

4.1 Amplification Using the L1 PLRU

PLRU Replacement Policy. Modern Intel processors have an
8-way set-associative L1 data cache, which implements an approxi-
mation of the least-recently-used (LRU) replacement policy, dubbed
PLRU (for pseudo-LRU). Conceptually, cache lines are organized
as the leaves of a balanced binary tree structure (cf. Figure 2). The
state of each node of the tree is carried by one state bit, which can
be thought of as an arrow, pointing to one of its two children.

On a cache hit, i.e., when the requested line can be served directly
from the L1d cache, the arrows at each node along the path from
the root to the cache line are set to point away from this line. On
a cache miss, the requested line is loaded into the cache. The line
to be replaced (or evicted) is selected by following the direction
of the arrows from the root of the tree to one of the leaves. Then,
similarly to a cache hit, the direction of all traversed arrows is set to
point away from the newly inserted line. The line that is currently
cached, but is next to be evicted, is said to be the eviction candidate.
Basic PLRU Amplification. leaky.page [56] proposes a single-
shot amplification technique that captures an L1 Eviction event,
e.g., the secret-dependent eviction of an attacker line A by a line
X that maps to the same L1 set. In particular, their PLRU amplifier
repeatedly traverses a sequence of memory loads mapping to spe-
cific cache lines (which, to prevent the secret-dependent state from
being destroyed, does not include the line X itself). This traversal
exhibits a different ratio of L1 hits and misses conditioned on the
secret-dependent eviction of A (the L1 Eviction event). Given that L1
cache misses take longer to resolve than L1 cache hits, the different
hit/miss pattern gives rise to fast and slow instances. By repeating
the traversal until the time difference between the fast and the slow
pattern is larger than the timer granularity A, the occurrence of the
L1 Eviction event can be revealed with a low-resolution timer.

Concretely, consider cache lines A-H, which all map to the same
L1d set. Accessing the preparation pattern load (AECGBFDH) (i.e.,
aload to A, then to E, etc.) produces the initial state of the PLRU
tree as in Figure 2, or one that is equivalent to it, up to permuting
the two children of each node. Note that this is only guaranteed as
long as none of the lines A-H are cached prior to the pattern, which
is a prerequisite that can be fulfilled by evicting the relevant L1 set.
To ensure that the processor does not reorder the loads of line A-H,
they are serialized through a data dependency [56].

To describe the traversal pattern, we adopt a compact notation.
The format is traverse(x) gn, where * is one iteration of the base
pattern, and B" implies line B is accessed once every n accesses of

Table 1: Traversal and refresh patterns (novel in bold), along
with the sequence of hits (H) and misses (M) they generate.
Accesses corresponding to line B are underlined.

Traversal Hit/Miss (1) Hit/Miss (2) Type
traverse(AECGFDH) g4 HHHHHHHH.. ~ MMMHMMMH.. Distance 1
traverse(AECGFDH) ;s HHHHHH. . MMHMMH.. Distance 2
traverse(AECGFDH) 32 HHHH. . MHMH. . Distance 3
Refresh Type
load(@12B345BECGBFDHB) Distance 1

load(@1B23B4B5BECBGDBFBHB) Distance 2

load(0B1B2B3BEBGBFBHB) ~ Distance 3

the base pattern. Therefore, traverse (AECGFDH) g4 is short for the
repeated traversal of load (AECBGFDBHAEBCGFBDHABECGBFDHB. .).
Due to the PLRU replacement policy in the L1d cache, all accesses
are L1 hits if the L1 Eviction event did not occur, and only 25% of
them are hits if it did occur. Figure 2 explains why. In case the L1
Eviction did not occur, the cache remains in state (1). Naturally, as
every element of the traversal pattern is still in L1, all accesses will
be hits. If the event did occur, A was evicted from the cache and
replaced by X (2). At the same time, E became the next eviction
candidate. In the first step of the traversal, we access A, which, since
it was evicted, results in a cache miss. Since E is the new eviction
candidate, E will be replaced by A, and C becomes the eviction
candidate (3). In the next step, we access E, but since it was just
evicted, it will result in another miss, etc. The repeated access to B
serves to prevent X from being evicted, without accessing X itself.
Improving the Amplification Ratio. To enhance the power
of the PLRU amplifier, we propose to perform the traversal with
addresses that are congruent in L2. This automatically implies con-
gruence in L1 as well. The traversal patterns remain the same.
However, the penalty for the slow pattern becomes larger, as some
of the cache misses need to be served from the LLC instead of L2.
We also considered traversing LLC-congruent lines but did not
observe an additional penalty compared to L2-congruent lines.
Increasing Robustness. Consider when a competing L1d access
to the same set occurs, e.g., by another process running on the same
physical core. If, at any point, line X or B is evicted, the amplifier
no longer works. The original traverse (AECGFDH) g4 sequence is
not very robust against this; if another access to the L1 set occurs
before any of the accesses to B, X is evicted (i.e., once every four
accesses, X is the first in line to be evicted in case of a cache miss).
Therefore, Table 1 contains more robust sequences where X is at
worst two (distance-2) or three (distance-3) cache misses away from
being evicted. This is obtained by accessing B more frequently and
comes at the cost of (slightly) decreasing the amplification ratio.

Table 2: Amplifying other events in the L1d cache. The adap-
tor modifies the state difference to match the one in Figure 2,
such that identical traversal patterns can be used.

AMPLIFY Initialize Event (option 1/2) Adaptor

L1 Eviction load(AECGBFDH) load(X) /v +

L1 Reordering load(AECGBFDH) load(DH) / load(HD) load(XFHB)
L1 Back-Invalidation load(AECGBFDH) invalidate(E) /+ load (XFHB)

As an optional robustness measure against degradation of the L1
state due to noise, we also propose to refresh it periodically. That
is, we periodically evict the L1 set with additional lines 0-5 that
map to the same set, without affecting the presence or absence of
lines X and B. This can occur with the refresh patterns in Table 1.
Note that refreshes should only be repeated once every so many
traversals, e.g., 128, and hence are negligible for the execution time.
Expanding Measurable Events. We now discuss how the PLRU
single-shot amplifier can be generalized to be conditioned on other
initial microarchitectural contexts relating to the L1 data cache, i.e.,
L1 Reordering and L1 Back-Invalidation (cf. Table 2).

L1 Reordering is captured in the following manner. The L1 PLRU
state is prepared as before (i.e., Load (AECGBFDH)). Recall that line
A is the eviction candidate after the preparation. We aim to cap-
ture the load order of lines D and H. If D is accessed before H, A
remains the eviction candidate. If, instead, H is accessed before D,
E becomes the eviction candidate. Now consider another access to
line X, serialized to happen after both loads. It evicts either line A or
E, depending on the load order of D and H. Then, after accessing a
short adaptor sequence (Table 2), traversing the original L1 Eviction
pattern exhibits the same hit/miss pattern as the L1 Eviction event.

L1 Back-Invalidation is captured as follows. The state is prepared
as before (i.e., Load (AECGBFDH)). Line A is the eviction candidate.
Consider the event where line E is evicted from the LLC. To satisfy
the LLC inclusion property, this triggers a back-invalidation of line
E in L1. Now consider another access, to line X, happening after
this potential back-invalidation. If the invalidation has occurred, X
takes the place of E, since the L1 replacement policy favors filling
empty ways. If it did not occur (+), X evicts A. Again, a short adaptor
sequence makes it behave like the original L1 Eviction pattern.

AmpLIFY: L1 PLRU.

PLRU can capture reorderings and invalidations. L2-congruent
lines increase the amplification ratio, and distance-2/3 sequences
boost robustness.

4.2 Amplification Using prefetchNTA

Non-Temporal Prefetch on Intel x86. prefetchNTA is a soft-
ware prefetch instruction with a non-temporal hint, communicating
to the processor that this data will not be used multiple times. Its mi-
croarchitectural behavior on Intel CPUs was previously studied by
Guo et al. [24]. Importantly, lines cached using this instruction are
treated differently by the LLC replacement policy. For details on this
replacement policy, we refer the reader to prior work [1, 10, 24, 66].

For our purposes, three generic properties are relevant. First, for
lines that are not cached, prefetchNTA performs a cache line fill in

.rept 1000 ; repeat at will
2 mfence
prefetchnta(A)
4 mfence
prefetchnta(B)
.endr

Listing 1: Prefetch-based amplifier.

& & <& <
HEEEEES . EEEEEY - [EEENEY - [EEEE

miss! miss! miss!

U & & U
HEOEEE N EEE ¢ SN - N

hit! miss! hit!

Figure 3: Working principle of the prefetch amplifier (LLC).

the LLC, but with the highest age, making it very likely to become
the eviction candidate. Second, prefetching lines that are already
cached in the LLC does not affect their LLC replacement policy
state. Third, prefetchNTA takes a (much) longer time to execute
for lines in memory than for those in the cache.

Technique. Figure 3 shows the working principle of the prefetch-
based amplifier. The initial microarchitectural context that con-
ditions the amplifier is the LLC caching state of an attacker line
A. Assume that the attacker also has access to a line B, which is
not cached but maps to the same LLC set as A. The amplifier is a
repeated alternating prefetchNTA of lines A and B, serialized with
mfence instructions to maintain their execution order (Listing 1).

Consider the case where line A is not cached, shown on the
top half of Figure 3. The prefetchNTA of line A caches it in the
LLC as the eviction candidate (indicated by the empty arrow). The
prefetchNTA of line B evicts A, and installs B as the new eviction
candidate. As the pattern is repeated, every prefetch is served from
memory, slowing down the execution.

Now, consider the case where line A is cached (but is not the
eviction candidate). The first prefetchNTA of A is fast and does
not affect its replacement state. Although the first prefetchNTA
of B is slow, it caches B in the LLC as the eviction candidate and,
importantly, does not evict A. All future prefetchNTAs of A and B
are fast, as both lines remain cached without evicting each other.
Robustness. The fast and slow instances of the prefetch amplifier
share the invariant that there is always a prefetched attacker-chosen
line in the cache. Therefore, if there are spurious cache line fills
(i.e., noise) in the LLC set, it is likely that a prefetched line is evicted.
In neither of the fast or slow instances does this destroy the state
difference needed to keep the amplifier functional. In the fast case,
the spurious access will evict B from the LLC, which will make it
be loaded from memory once, after which the pattern can continue,
as A is still cached normally. In the slow case, the spurious access
will evict either A or B from the LLC but, regardless of which one,
the next prefetch would have been slow anyway.

AMPLIFY: Non-Temporal Prefetch.

Quick LLC eviction enables robust single-shot amplification.

—IF ts Ay
TTTTT T T T T T T T 1T T T T T T T 11T T T TTTTTT E
<
10° 403 o
8 =
< Jo2 g
> 107 |- &
O =
101 A
5 L
10 e T e w0 E
10® 10* 10° 108 107 108
Repetitions

Figure 5: Performance of the prefetch-based amplifier (me-
dian of 10 batches of 100 runs per data point).

Table 3: Comparison of single-shot amplifiers.

Source Amplifier Single-Shot A Max. A
leaky.page [56] L1 PLRU (L1-congr., dist-1) v 1.3 ~500ps
This Work L1 PLRU (L2-congr., dist-1) v 2.3 2.4ms
This Work L1 PLRU (L2-congr., dist-2) v 2.0 1.8 ms
This Work L1 PLRU (L2-congr., dist-3) v 1.6 5.1ms
This Work prefetchNTA v 101 350ms

tr 1S.L1NR 1S,L2NR ISL1R IsL2.R
Atpi NR Atpa NR AtpyR— Atro R —_
108 [T T T I T 2
<
12-107% g
5] =}
= 7L [5)
o 10 . 5
3 11-107% &
[a]
105 - — o
Ll T v i 0 E
102 10% 10* 10° 106
Repetitions
(a) Distance-1 PLRU amplifiers
tF 1SL1,NR 1SL2,NR ISL1R 1SL2.R
AtpNR Atro NR AtpyR- - Atro R —
109 FTTIT T T T T T T T T T 72.10—3 2
A =
" 4151073 8
o 7 «
5 10 41-107 &
o} s E
15-107 [a)
10° |~ e 9]
LT e v 40 é
10% 10% 10* 10° 106
Repetitions
(b) Distance-2 PLRU amplifiers
tp IS.L1,NR S,L2NR ISL1LR IsL2.R
AtpNR Atpo NR AtpyR— AtroR —_
T T T -
108 |- <
" 14-1073 8
6 | 5)
& 12-107% &
[a]
. 9]
104 ol ool ol ol 0 E
102 103 104 10° 106
Repetitions

(c) Distance-3 PLRU amplifiers

Figure 4: Performance of L1 PLRU amplifiers. The subscripts
in the legend denote whether L1- or L2-congruent addresses
are used and whether there is a refresh (R) or not (NR). On
some subfigures, t; 1. Nr and t; 1. g may overlap.

4.3 Evaluation

PLRU Amplifiers. Figure 4 depicts the fast (tr) and slow (ts)
traversal times of the L1 amplification patterns as a function of
the number of repetitions, along with the time difference they pro-
duce. We do not evaluate the L1 Eviction, L1 Reordering, and L1
Back-Invalidation amplifiers separately, since they have identical
performance. For each data point, we consider 100 runs of 100 it-
erations and take the median over all runs. When refresh patterns
are enabled, they are accessed once every 1024 traversals (with
distance 2). The amplification ratio is constant for small A, but as A
increases, noise accumulates and the amplification ratio degrades
until supposedly fast and slow traversals are no longer distinguish-
able. However, amplifiers vary in their resilience to degradation.

Prefetch Amplifier. Figure 5 shows the median traversal times
using the prefetch amplification method on the Intel Core i7-7700K.
The initial amplification ratio exceeds one order of magnitude,
which it maintains until roughly 1 billion cycles, after which it
declines. Due to its robustness, the amplifier is able to produce time
differences of several hundreds of ms from a single initial difference.

Comparison. Table 3 collects the best amplifier instances of each
type, along with their amplification ratio A and maximal output
difference A. It confirms that traversing L2-congruent lines, instead
of L1-congruent lines, produces a larger time difference. For the
L1-congruent distance-1 amplifier [56], our best implementation
achieves a maximal output difference of 500 ps. For the distance-
3 sequences, we observe output differences up to 1.5 ms for L1-
congruent addresses, and 5 ms for L2-congruent addresses.

In Figure 4, periodic refreshes appear to increase the robustness
of the L1 sequences, but no such effect is visible for the L2 sequences.
Measurement Rate. The rate at which timing measurements can
be performed for a timing source of granularity A is determined
by the amplification ratio A of the amplifier. With A defined as the
ratio ;—; and tp — tg = A, this implies that ¢t = % and tg = %.
As an example, to produce a timing difference of A = 100ps, a
slow measurement for the leaky.page PLRU amplifier (A = 1.3)
takes ~ 4.3A = 430 ps. It takes ~ 1.8A = 180 ps for our best PLRU
amplifier, and ~ 1.1A = 110 ps for our prefetch-based amplifier.
Note that these estimates are only valid for the regimes in which
A is constant (and hence independent of A). If amplifiers are used
beyond their robustness capabilities, they may not even produce
any meaningful timing difference anymore (cf. Figure 4).
Practical Considerations. The prefetch-based amplifier relies
on the x86 prefetchNTA instruction and on Intel’s implementation
choice of marking prefetched lines for quick eviction from the
inclusive LLC [24]. A similar amplifier may be devised to exploit the
LLC replacement policy (cf. [5, 9, 10]) without a prefetch instruction,
at the cost of a lower amplification ratio. The L1-based amplifiers
do not require the exposure of specific instructions and can hence
be used in restricted environments (cf. [56] and Section 6.3).

The prerequisites for our single-shot amplifiers are met for a
wide range of Intel processors [24, 56]. However, other CPU families
are not guaranteed to satisfy them. Still, the existence of single-
shot amplification demonstrates that innocuous implementation
decisions invalidate high-level security properties that are, at the

dep = prepare-uarch()

// first leg // second leg
dep1 = secret-delay(dep) dep2 = fixed-delay(dep)
5 depl = instr-1(depl) dep2 = instr-2(dep2)

7 race-end(depl, dep2)

Listing 2: Time to Order conversion.

surface, completely unrelated. We leave an exploration of single-
shot amplifiers in other processor families to future work.

5 CONVERTING CPU SIDE CHANNELS

In this section, our objective is to convert side channels of interest
to state differences that are amenable to single-shot amplification.

5.1 Back-Invalidation

&

T e

4
LTS L] ue HEE

—

0 I I O I P A 1]

‘Ll,\ r‘ ‘ ‘.‘le

Figure 6: Conversion based on CPU back-invalidation logic.
If a line (S) gets evicted from the LLC (by T), all copies of S
in the core-private caches get invalidated.

The first technique uses back-invalidation, a deterministic microar-
chitectural behavior on processors with inclusive LLCs. When a
cache line is evicted from the LLC, it is automatically invalidated
in the L1 and L2 caches to preserve the inclusiveness invariant.
Therefore, the CPU back-invalidation logic produces an implicit
conversion from the LLC caching status to an L1 Back-Invalidation
event, which is amenable to single-shot amplification (cf. Section 4).

With this technique, memory accesses to addresses that map
to the monitored LLC set produce the invalidation of a fixed and
predictable line in L1. Note that this conversion immediately implies
the single-shot amplification of the cross-core Prime+Scope [51]
cache attack, which infers LLC activity through the invalidation of
a specific line (i.e., the scope line) from the L1 cache.

ConNVERT: CPU Back-Invalidation.
LLC evictions automatically produce L1 Back-Invalidation events.

5.2 Time to Order

The second conversion technique, Time to Order, exploits the out-of-
order execution of instructions on modern processors. Instructions
that do not have data hazards, i.e., data dependencies on architec-
turally older instructions, may be executed ahead of these older
instructions. Therefore, in an out-of-order processor, the execu-
tion order of instructions depends on the time it takes for their
dependencies to resolve. As a result, well-designed instruction se-
quences can encode the latency of specific instruction paths into
the execution order of instructions that depend on these paths.
Concretely, as in Listing 2, consider an execution race between
two independent legs, which are orchestrated to start at the same

Table 4: Time to Order for our single-shot amplifiers.

Amplifier prepare-uarch secret-delay instr-1 instr-2
L1 Reordering load(AECGBFDH) any load(D) load(H)
Prefetch evict(A) any load(A) prefetchNTA(A)

time, i.e., through a shared data dependency on another instruction
(or the preparation step prepare-uarch). One of the legs has a
secret-dependent latency, i.e., it contains an operation for which we
want to expose the execution time. The other leg has a fixed latency,
implemented as an instruction sequence with a fixed execution time
(e.g., a sequence of data-dependent multiplications). The length of
the fixed-delay sequence is chosen such that the relative execution
order of the final instructions of the two legs (resp. instr-1 and
instr-2) depends on the latency of the secret-dependent operation.
If, in a later stage, the execution order of instr-1 and instr-2
can be exposed, it reveals whether the secret-dependent latency is
above or below the threshold determined by the fixed-delay leg.

In short, Time to Order turns a timing difference into a difference
in the execution order through a microarchitectural race condition.
In principle, the timing difference at the input (i.e., the event that
determines the length of the variable-time leg) can be of arbitrary
type. We now show how an instruction ordering at the output is
amenable to single-shot amplifification. Depending on the prepara-
tion and the choice of instr-1 and instr-2, time differences can
be cascaded to L1 (cf. Section 4.1) or the LLC (cf. Section 4.2).

5.2.1 Conversion to L1 Caching Status. Table 4 shows how Time
to Order can convert a time difference into an L1 Reordering event.
The microarchitectural state is prepared by filling the PLRU tree as
in Section 4.1, and the instructions at the end of each leg are simply
the loads as described for the L1 Reordering amplifier.

There is no explicit restriction on the type of secret-delay that
can be converted with Time to Order. Therefore, it is more gener-
ally applicable than the back-invalidation conversion (Section 5.1),
which has the benefit of being deterministic. A relevant event to
capture and convert into the L1 PLRU state is the presence of an
LLC hit or miss. Indeed, properly wielding this conversion (see
Section 6) reinstates the capability of constructing LLC eviction
sets in the browser [45, 67] using the L1 PLRU amplifier, as well as
cross-core [40, 45, 51] and cross-process microarchitectural attacks.

ConNVERT: Time to Order (L1).
Encodes a time difference into the L1 PLRU replacement policy.

5.2.2 Conversion to LLC Caching Status. As a conversion to LLC
caching status, Table 4 shows a simple Time to Order instance. The
instructions at the end of the legs are, respectively, a prefetchNTA
and a regular load for the same cache line. If the prefetch comes first,
the line becomes the eviction candidate. If the load comes first, it
(generally) does not. The resulting LLC state difference can directly
be amplified using the prefetchNTA sequence (cf. Listing 1).

CoNVERT: Time to Order (LLC).

Encodes a time difference into a line’s LLC caching status.

The Time to Order primitive is versatile. With some profiling, seem-
ingly unrelated input side channels (stateless or otherwise) can be
converted into LLC/L1 state changes, provided that a race can be
found for which the outcome reliably depends on the initial leakage
type (e.g., cache line status). Other initial leakage types include
time-varying instructions, port contention [4, 7, 55], branch predic-
tor state [15], ROB contention [3, 74], DRAM contention [49] and
LLC interconnect contention [12, 47, 69]. We cover some of these
examples as case studies in Section 6 but leave a full exploration of
all amplifiable CPU side channels to future work.

Thread 1 { Invoke H Variable event HWrite 1 J
l

\—{ Fixed delay HWrite 2 J

Figure 7: Architectural reordering.

Memory

Thread 2

Time

5.3 Architectural Reordering

The final contribution of this section is architectural reordering,
a novel integrated conversion and measurement routine (cf. Fig-
ure 7). To preserve the semantics of a given instruction stream, the
processor always executes store operations to the same address
in program order. However, no such guarantees exist for stores in
parallel threads. By conditioning the order of store instructions in
different threads on a timing difference, an attacker can directly
produce an architectural state change without any timing source.

Accuracy. We use architectural reordering to infer the cache state
of a line (causing a hit or a miss in L1). We perform 100 runs of
10,000 iterations for a random initial state. The median accuracy is
100% for hits and 99.98% for misses.

Limitations. This technique relies on multiple threads and a mech-
anism for these to modify the same memory location. The easiest
way of accomplishing this in the browser is with Web Workers and
shared memory, which already implies the availability of known
high-resolution timers [55, 57]. However, Architectural Reordering
has an atypical behavioral footprint. Instead of continuously in-
creasing a value and then querying it, which is signature behavior
for a timing attack, the attacker thread performs two writes and a
read to a single memory location per timing measurement, while
the helper thread only performs a single write per measurement.

CONVERT + MEASURE: Architectural Reordering.

Eliminates explicit timing measurements by converting time
differences into differences in an architecturally visible value.

6 CASE STUDIES

6.1 Extreme Amplification

6.1.1 Human Timers. As discussed in Section 4.3, our prefetch-
based amplifier can produce comparatively huge timing differences

Execution Time Error Rate

LBLBLILLALL LBLBLLLALL T T T T T TTITT T T T T T 1T T T TTTT 2% 8
[} 172
g 1d 3
) . 1'h g
o lmin
;8 1s 1% f
2]
3 1 =
M ms 5}
M o

Ll il il Tl ol ol ol ggp k=]

Tus 10pus 100ps 1ms 10ms 100ms 1s 10s

Timer Granularity

Figure 8: Constructing LLC eviction sets with the prefetch-
based amplifier for extremely coarse-grained timers (200
runs for 1 ps-100 ms, 25 runs for 1s, 1 run for 10s).

based on a single initial cache hit or miss. It is worth asking whether
the complete elimination of all sources of time from the execution
environment would thwart CPU timing attacks at a fundamental
level. To answer this question convincingly, we explore an artifi-
cially restrictive setting where there are no timers on the attacker’s
end, leaving them to rely only on their human perception.

We perform a study on fifteen human participants, aged 20-30.
Each participant classifies 100 random single-shot side-channel
observations as either fast or slow. The machine is an Intel Core i7-
7700K, with which the participants interact over SSH. Participants
are exposed to the measurement by a command line tool that prints
Start (and Stop) when the traversal pattern starts (and ends), and
are tasked to classify the runs corresponding to a single initial
cache hit or cache miss. Based on some manual calibration, we
parametrize the amplifier such that it produces a timing difference
of 150 ms; the fast traversal takes 16 ms, whereas the slow traversal
takes 166 ms. Like in other timing attacks, the participants first
calibrate on a small number of practice observations (although, of
course, the threshold is perceptual and not numerically quantified).

Together, the participants achieve an average accuracy of 98.4%
(median 99%). Several participants achieve a perfect score. Note
that the evaluation includes all error sources, such as human error,
jitter due to SSH and I/O, and amplifier degradation due to noise.

6.1.2 Eviction Set Construction. As a relevant application, we also
implement a routine to construct LLC eviction sets with arbitrarily
coarse-grained timers. We do not rely on the availability of huge
pages (2 MB or 1 GB), i.e., we only assume attacker control over
the lower 12 bits of the physical address (4 KB pages).

We use the eviction set construction method due to Purnal
et al. [51], together with the prefetch-optimization due to Guo
et al. [24]. The routine tests individual cache lines for congruence
in the LLC. To detect congruence, we use the prefetch amplifier. If
addresses A and B are congruent, they constantly evict each other in
a prefetch loop; otherwise, they do not. As A and B never enter the
cache as anything other than the eviction candidate, amplifying this
event is even more robust than for a generic side-channel setting (cf.
Section 4.3). Lines that demonstrate congruence are accumulated
in an eviction set until the desired number of addresses is obtained.

Figure 8 shows the execution time and error rate of the routine for
varying timer precisions, on an Intel Core i7-7700K (16-way LLC).
The error rate is the fraction of addresses that are not congruent
with the randomly generated target. To emulate timers of arbitrary

1 victim_preamble();

2 x = calculate(_); // <--- contention source ---+
3 load (f(x)); // load that depends on x |
1 if (secret) { // |
5 _ = calculate(_); // <--- contention source ---+
6}

Listing 3: Cross-core port contention leakage.

coarseness, we instrument calls to the rdtsc hardware counter.
For the 1 s-granular timer, we use the Unix Epoch instead, i.e., the
number of seconds elapsed since midnight on January 1, 1970.

We even attempt to construct an eviction set using a 10-second
granular timer, representing an amplification of 8 orders of magni-
tude w.r.t. to the timing difference between a cache hit and a cache
miss (e.g., 100 ns). With a runtime of less than 6 hours, the attempt
is successful.

AMPLIFY: Single-shot amplification up to seconds.

It is possible to amplify microarchitectural timing differences
beyond any timer restriction that can be practically imposed.

6.2 Amplifying Stateless Leakage

I B port contention

D [no port contention

Occurrence
ot
=
S

1,500 1,550 1,600 1,650 1,700

Load Arrival relative to the start of victim routine [cycles]
Figure 9: Fine-grained cross-core port contention attack.

6.2.1 Cross-Core Port Contention. Consider the code pattern in
Listing 3, which leaks the boolean value of secret through port
contention [4, 7, 54]. If the operations on lines 2 and 5 use the same
execution ports, they interfere, delaying each other’s execution. As
ports are core-private resources, this stateless leakage is not directly
visible to processes running on other cores. However, there is an
implicit CONVERT performed by the victim code that still transmits
this information; the presence or absence of contention introduces
a secret-dependent delay on the load on line 3.

Fine-Grained Timer. We first expose the secret-dependent time
of the memory access using a high-precision timer. Later, we apply
ShowTime to decode the same information with a low-precision
timer. We instantiate the contention sequence calculate() as 16
vsqrtpd (floating point square root) instructions. Figure 9 shows
how the secret-dependent delay of the memory access, relative to
the start of the victim program, can be picked up across cores by
the high-precision Prime+Scope [51] attack. Note that the presence
of the load itself does not encode any side-channel information, i.e.,
it happens independent of the secret. The time variation of the LLC
eviction is roughly 70 cycles (i.e., less than 20 ns).
Coarse-Grained Timer. There are several challenges to exposing
these fine-grained time variations to a low-precision timer. First, the
CONVERT stage needs to implement an implicit threshold between

000 dno port contention

3,000 - In port contention
2
1

Occurrence

(e T T T T T T
04M 06M 08M 1.0M 12M 14M 1.6M 1.8M

Amplifier output [cycles]

Figure 10: Coarse-grained cross-core port contention.

load(BCGAB); // Reinstate A; makes pattern repeatable
3 // first leg // second leg
+ x = load(SCOPE); y = fixed_delay();
5 y = load(G * y);

7 load(X * x " y); // Evict A or E

Listing 4: Repeatable Time to Order conversion.

the histograms in Figure 9, and the result of this threshold should
be encoded in a stateful microarchitectural component from which
it can be amplified. Second, the conversion requires a high timing
sensitivity, comparable to accessing the scope line, which is already
just sufficient enough to reveal the contention (cf. Figure 9).

Our solution is the conversion pattern in Listing 4. The cache
state is first prepared as follows. The LLC is prepared as in Prime+
Scope, so the victim load will evict a designated cache line, i.e., the
scope line. The L1 is prepared with the basic PLRU preparation
pattern (cf. Section 4.1). The conversion is made repeatable with
load(BCGAB), which evicts line X if it took the place of A (first leg
won), but not if it took the place of E (second leg won). Therefore, if
the monitored load evicts the scope line during any of the iterations
of Listing 4, it is encoded in the L1 state. Before running the attack,
we calibrate how often it needs to be repeated, relative to the start
of the victim routine, to implicitly implement the threshold. As this
conversion pattern takes only 30 cycles on average, it is precise
enough to implement the necessary implicit threshold in Figure 9.

The complete ShowTime cascade is as follows. First, there is an
unintentional conversion from port contention into an LLC eviction
that occurs at a secret-dependent time. This secret-dependent time
is converted into an L1 Reordering event, where the order depends
on whether the LLC eviction occurs during the time that the attacker
repeats the conversion pattern. Finally, the L1 Reordering event is
amplified. Even though this cascade has several moving parts, the
results are satisfying, as can be observed in Figure 10.
Discussion. Behnia et al. [5] exploit a code pattern similar to
Listing 3. However, they question whether such a minor difference
in load timing can be captured by a cache attack on the LLC. There-
fore, they require all conversions to take place in the victim code,
i.e., the victim itself should encode the time difference in the LLC
replacement policy. In our work, we show that this requirement can
be relaxed; high-precision LLC cache attacks can exfiltrate minute
time differences directly, with and without fine-grained timers.

If an attacker can co-locate a process on the victim’s CPU core,
the contention may be exposed with a direct Time to Order conver-
sion. We leave an exploration of this setting to future work.

6.2.2 Instantaneous CPU Frequency. Recently, attacks exploiting
dynamic voltage and frequency scaling (DVFS) have been pro-
posed [39, 70]. With DVFS, the instantaneous frequency of a CPU
changes based on its power consumption which, in turn, may de-
pend on the data being processed. We now explore whether infor-
mation on the instantaneous CPU frequency can be exposed in the
absence of direct interfaces (e.g., cpufreq) and fine-grained timers.

(5]

£ 400 I m2900MHz
B lo

£ 2004 3400MHz
Q

© 0 \ T T T T T T T

100K 200K 300K 400K 500K 600K 700K 800K
Amplifier output [cycles]

Figure 11: Exposing CPU frequency with crude timers.

Listing 5 (cf. Appendix A) contains the proof-of-concept code
pattern. We observe that Time to Order races can be orchestrated
to be sensitive to the instantaneous CPU frequency. We fix the
CPU frequency using sudo cpupower frequency-set on an Intel
Core i5-7500, running Rocky Linux 8.7. We set it to either 3400
MHz (the base frequency of the CPU) or 2900MHz, representing
a 15% frequency adjustment. Figure 11 shows that the resulting
histograms are clearly distinguishable. To our knowledge, we are
the first to remark that the CPU frequency, an inherently stateless
microarchitectural property, can be captured, converted, and ampli-
fied. We defer a comprehensive study of this phenomenon, as well
as the achievable frequency granularity, to future work.

CONVERT + AMPLIFY: Stateless Side Channels.
Stateless timing leaks can be exposed with coarse-grained timers.

6.3 ShowTime in Restricted Environments

With ShowTime, we can construct LLC eviction sets in JavaScript,
which is a key prerequisite for several browser-based attacks, e.g.,
cross-core Prime+Probe [45], Rowhammer [13, 22], and Spook.js [2].
In addition, finding addresses that are L2/LLC-congruent permits
the use of stronger PLRU amplifiers for the remainder of the attack.

With coarse-grained timers, the number of measurements re-
places the number of memory references as the bottleneck for the
execution time. Therefore, we use the group elimination method by
Vila et al. [67] rather than the Prime+Scope method [51]. We modify
Vila’s JavaScript code [65] to use ShowTime as the measurement.
In particular, we use Time to Order to translate the LLC eviction
signal to the L1 cache and use the distance-3 PLRU amplifier for
robustness (cf. Listing 6 in Appendix A for details.)

We start with an initial set that is a superset of an eviction set
with 95% probability (cf. [67]) and exclude the runs where this is
not the case. To obtain the ground truth, we verify the correctness of
the eviction set using /proc/pagemap [65]. On a non-isolated web-
site in Chrome 108, with a performance. now() precision of 100 ps,
we construct a fully correct eviction set in 176 out of 250 runs, with a
median runtime of 25 seconds. For this proof-of-concept implemen-
tation, we did not exhaust all possible optimization opportunities.

Table 5: Converting CPU Side Channels.

Source Method Input Channel Output Channel
Behnia et al. [5] 000 Execution Port/MSHR Cont. LLC
Aimoniotis et al. [3] ROB Size ROB Pressure L1/LLC
Wang et al. [70] DVFS Power Freq. / Time
Back-Invalidation LLC Inclusiveness LLC L1
Time to Order 000 Execution Any L1/LLC
Arch. Reordering Thread Parallelism Any Data

As the objective of this work is to study microarchitectural attacks
in the face of coarse-grained timers, we also made no attempts to
increase the effective precision of the timing sources themselves.

CONVERT + AMPLIFY: ShowTime in the browser.
ShowTime applies to restricted browser settings. It can be used
to construct LLC eviction sets with coarse-grained timers.

7 RELATED WORK

Multi-Shot Amplification. Mcilroy et al. [42] provide a theo-
retical argument for the availability of arbitrary multi-shot timing
amplification on processors implementing optimizations. Wikner
et al. [73] and Schwarzl et al. [59] consider multi-shot amplification
for mounting Spectre attacks from JavaScript. Some other works
cope with low-resolution timers by aggregating the latency of many
memory accesses [60, 61], with the drawback of losing all spatial
information of the side channel. Rokicki et al. [54] amplify (state-
less) port contention from JavaScript in a covert channel setting,
where multi-shot measurements are possible.

Multi-shot amplification is also used for the software-based ex-

ploitation of physical side-channels (e.g., power consumption [37]
and CPU frequency [39, 70]). Future work should investigate the
feasibility of single-shot amplification for these attack vectors.
Existing Conversions. Table 5 summarizes the prior work and our
contributions in the space of converting CPU side channels. Behnia
et al. [5] convert several sources of core-private contention to LLC
caching status by exploiting specifics of the LLC replacement policy.
Aimoniotis et al. [3] exploit that incorrectly speculated loads only
get executed if they fit in the reorder buffer (ROB) [74], converting
ROB contention into caching status. Our work contributes simple
conversions of several side channels into state differences that are
amenable to single-shot amplification.
Disabling Timing Sources. Browsers already cripple timers [16,
17, 44, 63, 68, 72], but this is also proposed for native (mobile/desk-
top/cloud) code [41, 64]. Prior work demonstrates that, in some
cases, attackers can build [19, 55, 57, 58] or simply bring [52] their
own timing sources. However, our work practically demonstrates
that even when attackers cannot use these methods, restricted
timers are not a holistic countermeasure against timing attacks.

Note that our findings do not threaten the validity of other side-
channel countermeasure classes, such as constant-time program-
ming [32], isolation [11, 48] or randomization [71].

Concurrent Work. In concurrent work, Xiao et al. [75] leverage
out-of-order execution (“race gadgets”) to convert microarchitec-
tural state changes, similar to one of our conversion routines (Time

to Order, cf. Section 5.2). However, they do not consider amplify-
ing stateless channels. They also contribute single-shot amplifiers
(“magnification gadgets”), including the L1 Reordering PLRU ampli-
fier, and others that are not cache-based. Though they suggest that
arbitrary amplification can be achieved, they do not demonstrate
amplifying timing differences beyond 100 ps. In our experiments,
we overcome several practical challenges to obtain timing differ-
ences that are larger by one to four orders of magnitude.

Another concurrent work [30] uses transient execution to encode
the caching status of one cache line into many cache lines. In this
manner, they obtain single-shot amplification of cross-core cache
events. Similar to our work, they also construct LLC eviction sets
in a browser environment using a 100 ps timer.

8 CONCLUSION

In this paper, we contributed the ShowTime framework to expose
arbitrary microarchitectural timing leaks in a single shot to coarse-
grained timers. Our techniques can capture cross-core and stateless
microarchitectural leaks, bypass currently imposed timer restric-
tions, and even amplify nanosecond-range timing differences such
that they are detectable by humans.

ACKNOWLEDGMENTS

We thank the anonymous AsiaCCS reviewers for their feedback and
the humans for participating in the timer study. This research is par-
tially funded by the European Research Council (ERC #101020005)
and the Flemish Government through the FWO project TRAPS.
It was also supported by the CyberSecurity Research Flanders
(#VR20192203), Horizon Europe (#101070008) and the Research
Fund KU Leuven. Antoon Purnal is supported by a grant of the
Research Foundation - Flanders (FWO).

REFERENCES

[1] Andreas Abel and Jan Reineke. 2020. nanoBench: a Low-overhead Tool for
Running Microbenchmarks on x86 Systems. In IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS).

Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked Yehezkel, Daniel Genkin, Eyal

Ronen, and Yuval Yarom. 2022. Spook.js: Attacking chrome strict site isolation

via speculative execution. In IEEE Symposium on Security and Privacy (S&P).

[3] Pavlos Aimoniotis, Christos Sakalis, Magnus Sjilander, and Stefanos Kaxiras.
2021. Reorder Buffer Contention: A Forward Speculative Interference Attack for
Speculation Invariant Instructions. In IEEE Computer Architecture Letters.

[4] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida
Garcia, and Nicola Tuveri. 2019. Port contention for fun and profit. In IEEE
Symposium on Security and Privacy (S&P).

[5] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Zhao,

Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, Adam Morrison,

Frank Mckeen, Fangfei Liu, Ron Gabor, Christopher W. Fletcher, Abhishek Basak,

and Alaa Alameldeen. 2021. Speculative Interference Attacks: Breaking Invisible

Speculation Schemes. In ASPLOS.

] Daniel J Bernstein. 2005. Cache-timing attacks on AES.

[7] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTh-
erSpectre: Exploiting Speculative Execution through Port Contention. In ACM
SIGSAC Conference on Computer and Communications Security (CCS).

[8] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2016. Dedup

Est Machina: Memory Deduplication as an Advanced Exploitation Vector. In IEEE

Symposium on Security and Privacy (S&P).

Samira Briongos, Ida Bruhns, Pedro Malagén, Thomas Eisenbarth, and José M.

Moya. 2021. Aim, Wait, Shoot: How the CACHESNIPER Technique Improves

Unprivileged Cache Attacks. In IEEE European Symposium on Security and Privacy

(EuroS&P).

Samira Briongos, Pedro Malagon, Jose M. Moya, and Thomas Eisenbarth. 2020.

RELOAD+REFRESH: Abusing Cache Replacement Policies to Perform Stealthy

Cache Attacks. In USENIX Security Symposium.

[2

[

=

[10

[11] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal Hard-
ware Extensions for Strong Software Isolation. In USENIX Security Symposium.
Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John McCalpin, and
Mengjia Yan. 2022. Don’t Mesh Around: Side-Channel Attacks and Mitigations
on Mesh Interconnects. In USENIX Security Symposium.

Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano Giuffrida,
and Kaveh Razavi. 2021. SMASH: Synchronized Many-sided Rowhammer Attacks
from JavaScript. In USENIX Security Symposium.

Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean M. Tullsen. 2017.
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX. In
USENIX Security Symposium.

Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Ponomarev.
2018. BranchScope: A new side-channel attack on directional branch predictor.
ACM SIGPLAN Notices (2018).

Google. 2020. Making your website “cross-origin isolated” using COOP and
COEP. https://web.dev/coop-coep/.

Google. 2021. Align performance API timer resolution to cross-origin iso-
lated capability - Chrome Platform Status. https://chromestatus.com/feature/
6497206758539264.

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
In USENIX Security Symposium.

Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida.
2017. ASLR on the Line: Practical Cache Attacks on the MMU. In Network and
Distributed System Security Symposium (NDSS).

Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller, and
Manuel Costa. 2017. Strong and Efficient Cache Side-channel Protection Using
Hardware Transactional Memory. In USENIX Security Symposium.

Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR.
In ACM SIGSAC Conference on Computer and Communications Security (CCS).
Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. In Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA).

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-level Caches. In USENIX Security
Symposium.

Yanan Guo, Xin Xin, Youtao Zhang, and Jun Yang. 2022. Leaky Way: A Conflict-
Based Cache Covert Channel Bypassing Set Associativity. In IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO).

Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In IEEE Symposium on Security and
Privacy (S&P).

Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and
Berk Sunar. 2016. Cache Attacks Enable Bulk Key Recovery on the Cloud. In
Cryptographic Hardware and Embedded Systems (CHES).

Intel. 2019. Intel Transactional Synchronization Extensions (Intel TSX) Asyn-
chronous Abort. https://software.intel.com/security-software-guidance/deep-
dives/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-
asynchronous-abort.

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: A Shared Cache
Attack That Works Across Cores and Defies VM Sandboxing - and Its Application
to AES. In IEEE Symposium on Security and Privacy (S&P).

Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking Kernel Address Space
Layout Randomization with Intel TSX. In ACM SIGSAC Conference on Computer
and Communications Security (CCS).

Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal Ronen, and
Yuval Yarom. 2023. The Gates of Time: Improving Cache Attacks with Transient
Execution. In USENIX Security Symposium.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
IEEE Symposium on Security and Privacy (S&P).

Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Advances in Cryptology - CRYPTO.

Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp, Nico-
las Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss. 2022. Half-Double:
Hammering From the Next Row Over. In USENIX Security Symposium.

Andreas Kogler, Daniel Weber, Martin Haubenwallner, Moritz Lipp, Daniel Gruss,
and Michael Schwarz. 2022. Finding and Exploiting CPU Features using MSR
Templating. In IEEE Symposium on Security and Privacy (S&P).

David Kohlbrenner and Hovav Shacham. 2016. Trusted Browsers for Uncertain
Times. In USENIX Security Symposium.

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX
Security Symposium.

Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,
Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based Power

[12]

[13

(14

=
&

[16

[17

[18

[19

)
=

[21

[22

[23

[24]

™~
2

[26

[27

[28

&~
20,

[30

[31

(32

[33

[34

[35

[36

[37

https://web.dev/coop-coep/
https://chromestatus.com/feature/6497206758539264
https://chromestatus.com/feature/6497206758539264
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort

[38]

[39]

[40

[41]

[42]

[43

[44]

[45

[46]

[47]

[48

[49]

[50]

[51]

(52

[53

[54]

[55]

[56

[57

Side-Channel Attacks on x86. In IEEE Symposium on Security and Privacy (S&P).
Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In USENIX Security Symposium.

Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel. 2022. Fre-
quency throttling side-channel attack. In ACM SIGSAC Conference on Computer
and Communications Security (CCS).

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks Are Practical. In IEEE Symposium on Security
and Privacy (S&P).

Robert Martin, John Demme, and Simha Sethumadhavan. 2012. Timewarp:
Rethinking Timekeeping and Performance Monitoring Mechanisms to Miti-
gate Side-channel Attacks. In International Symposium on Computer Architecture
(ISCA)

Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon Verwaest. 2019.
Spectre is here to stay: An analysis of side-channels and speculative execution.
arXiv:1902.05178 (2019).

MDN. 2020. Firefox 79 release notes for developers. https://developer.mozilla.
org/en-US/docs/Mozilla/Firefox/Releases/79#javascript.

MDN. 2022. performance.now() - Web APIs | MDN. https://developer.mozilla.
org/en-US/docs/Web/API/Performance/now.

Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and Their Implications. In ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS).

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: The Case of AES. In Cryptographers’ Track at the RSA Conference
on Topics in Cryptology (CT-RSA).

Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher. 2021. Lord of
the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are
Practical. In USENIX Security Symposium.

Dan Page. 2005. Partitioned cache architecture as a side-channel defence mecha-
nism. In IACR Cryptol. ePrint Arch. 2005/280.

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-cpu Attacks.
In USENIX Security Symposium.

Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede. 2021. Sys-
tematic Analysis of Randomization-based Protected Cache Architectures. In IEEE
Symposium on Security and Privacy (S&P).

Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. 2021. Prime+Scope:
Overcoming the Observer Effect for High-Precision Cache Contention Attacks.
In ACM SIGSAC Conference on Computer and Communications Security (CCS).
Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. 2022. Double Trou-
ble: Combined Heterogeneous Attacks on Non-inclusive Cache Hierarchies. In
USENIX Security Symposium.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey,
You, Get off of My Cloud: Exploring Information Leakage in Third-party Compute
Clouds. In ACM SIGSAC Conference on Computer and Communications Security
(CCs).

Thomas Rokicki, Clémentine Maurice, Marina Botvinnik, and Yossi Oren. 2022.
Port Contention Goes Portable: Port Contention Side Channels in Web Browsers.
In ACM SIGSAC Asia Conference on Computer and Communications Security
(AsiaCCS).

Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. 2021. Sok: In Search
of Lost Time: A Review of JavaScript Timers in Browsers. In IEEE European
Symposium on Security and Privacy (EuroS&P).

Stephen Réttger and Artur Janc. 2021. A Spectre proof-of-concept for a Spectre-
proof web. https://security.googleblog.com/2021/03/a-spectre- proof- of-concept-
for-spectre.html.

Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. 2017.
Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural

Attacks in JavaScript. In Financial Cryptography and Data Security.

Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
In Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA).
Martin Schwarzl, Pietro Borrello, Andreas Kogler, Kenton Varda, Thomas Schuster,
Michael Schwarz, and Daniel Gruss. 2022. Robust and Scalable Process Isolation
Against Spectre in the Cloud. In European Symposium on Computer Security
(ESORICS).

Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren,
and Yuval Yarom. 2021. Prime+Probe 1, JavaScript 0: Overcoming Browser-based
Side-Channel Defenses. In USENIX Security Symposium.

Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. 2019. Robust Website Fingerprinting Through the
Cache Occupancy Channel. In USENIX Security Symposium.

Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean Tullsen. 2022.
SecSMT: Securing SMT processors against contention-based covert channels. In
USENIX Security Symposium.

The Tor Project. 2015. Commit: Bug 1517: Reduce precision of time for
Javascript. . https://gitlab.torproject.org/tpo/applications/tor-browser/-/commit/
dcdsfec102a3eb19¢20013542fa3ca399dbo6dad.

Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. 2011. Eliminating Fine
Grained Timers in Xen. In ACM Workshop on Cloud Computing Security (CCSW).
Pepe Vila. 2019. Tool for testing and finding minimal eviction sets. https:
//github.com/cgvwzg/evsets.

Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Kopf. 2020. CacheQuery:
Learning replacement policies from hardware caches. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation.

Pepe Vila, Boris Kopf, and José F. Morales. 2019. Theory and Practice of Finding
Eviction Sets. In IEEE Symposium on Security and Privacy (S&P).

W3C. 2022. High Resolution Time. https://www.w3.org/TR/hr-time-3/.
Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. 2022. MeshUp: Stateless
cache side-channel attack on CPU mesh. In IEEE Symposium on Security and
Privacy (S&P).

Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W Fletcher, and David Kohlbrenner. 2022. Hertzbleed: Turning
Power Side-Channel Attacks Into Remote Timing Attacks on x86. In USENIX
Security Symposium.

Zhenghong Wang and Ruby B. Lee. 2007. New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks. In International Symposium on
Computer Architecture (ISCA).

WebKit. 2018. What Spectre and Meltdown Mean For WebKit. https://webkit.
org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/.

Johannes Wikner, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2022.
Spring: Spectre Returning in the Browser with Speculative Load Queuing and
Deep Stacks. In Workshop On Offensive Technologies (WOOT).

Henry Wong. 2013. Measuring Reorder Buffer Capacity. https://blog.stuffedcow.
net/2013/05/measuring-rob- capacity/

Haocheng Xiao and Sam Ainsworth. 2023. Hacky Racers: Exploiting Instruction-
Level Parallelism to Generate Stealthy Fine-Grained Timers. In ASPLOS.
Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W. Fletcher, Roy H.
Campbell, and Josep Torrellas. 2019. Attack Directories, Not Caches: Side Channel
Attacks in a Non-Inclusive World. In IEEE Symposium on Security and Privacy
(S&P)

Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-channel Attack. In USENIX Security Symposium.
Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: a Timing
Attack on OpenSSL Constant-time RSA. Journal of Cryptographic Engineering
(2017).

Zirui Neil Zhao, Adam Morrison, Christopher W Fletcher, and Josep Torrellas.
2022. Binoculars: Contention-Based Side-Channel Attacks Exploiting the Page
Walker. In USENIX Security Symposium.

https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/79#javascript
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/79#javascript
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://gitlab.torproject.org/tpo/applications/tor-browser/-/commit/dcd5fcc102a3eb19c20013542fa3ca399db66da4
https://gitlab.torproject.org/tpo/applications/tor-browser/-/commit/dcd5fcc102a3eb19c20013542fa3ca399db66da4
https://github.com/cgvwzq/evsets
https://github.com/cgvwzq/evsets
https://www.w3.org/TR/hr-time-3/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://blog.stuffedcow.net/2013/05/measuring-rob-capacity/
https://blog.stuffedcow.net/2013/05/measuring-rob-capacity/

Appenle 1 // Test whether group still evicts victim

2 dep = load(victim);

A EXTRA CONVERSION PATTERNS s dep = evict(candidate_set * dep);
4

1 // Prepare prefetch amplifier 5 // Start timer

2> dep = prefetchNTA(A); 6 start = performance.now();

. .

4 // Shared Dependency s // Prepare PLRU amplifier

5 dep = load(X + dep); // Cache miss 9 dep = prepare_PLRU(dep);

6 10

7 // Compute chain races against memory loads, u // first leg // second leg

s // the outcome of this race is frequency-dependent 12 depl = load(victim * dep); dep2 = delay(dep);
9 13 depl = load(D * depl); dep2 = load(H * dep2);
10 // First leg // Second leg 14

11 depl = load(Y + dep); dep2 = COMPUTE_CHAIN(dep); 15 // amplify the difference

12 depl = load(A + depl); dep2 = load(B + dep2); 16 amplify_L1(depl, dep2);

13 17

14 // evicts A if the first leg won 18 // End timer

15 dep = load(C + depl + dep2); 19 end = performance.now();

" Listing 6: Constructing LLC eviction sets.

17 // Amplify time difference

18 prefetch_amplifier(D, A); // Fast if A is cached
Listing 5: Instantaneous frequency measurement. The loads
of X and Y are cache misses, and only A-D map to the same
LLC set.

	Abstract
	1 Introduction
	2 Background
	3 ShowTime
	3.1 Threat Model
	3.2 General Framework

	4 Single-Shot Amplification
	4.1 Amplification Using the L1 PLRU
	4.2 Amplification Using prefetchNTA
	4.3 Evaluation

	5 Converting CPU Side Channels
	5.1 Back-Invalidation
	5.2 Time to Order
	5.3 Architectural Reordering

	6 Case Studies
	6.1 Extreme Amplification
	6.2 Amplifying Stateless Leakage
	6.3 ShowTime in Restricted Environments

	7 Related Work
	8 Conclusion
	References
	A Extra Conversion Patterns

