
In-order pipeline + plugins

Orange plugin: arithmetic and logic unit, plugging into the execute stage
Blue plugin: branch predictor, plugging into the execute and fetch stages

Proteus: An Extensible RISC-V Core for
Hardware Extensions

Marton Bognar, Job Noorman, Frank Piessens

imec-DistriNet, KU Leuven, Belgium

marton.bognar@kuleuven.be

Proteus in a nutshell SpinalHDL

Out-of-order pipeline

Resources

Motivation:
 RISC-V provides an easy-to-extend ISA
 Proteus provides an easy-to-extend hardware implementation!

Main properties:
 Free and open-source RISC-V softcore
 Focus on extensibility, ease of development
 Written in SpinalHDL
 Plugin system inspired by VexRiscv
 RV32IM + Zicsr, passing the official RISC-V unit tests
 Includes a Newlib board support package

 Implements Tomasulo’s algorithm
 Textbook implementation
 Still close to real hardware

 Reuses many of the plugins used in the in-order pipeline
 Configurable in many settings

 Number of reorder buffer entries
 Number of reservation stations
 Types of execution units
 Branch prediction algorithm

 Domain-specific language embedded in Scala
 Provides a higher abstraction level compared to other HDLs
 Speeds up development

 Compiles to Verilog

GitHub organization: https://github.com/proteus-core

 Docker environment

 RISC-V unit tests

 Instructions for synthesis

 Newlib board support package

 Example code

 Extensions

Extended abstract: https://mici.hu/papers/bognar23proteus.pdf

The in-order pipeline consists of a sequence of stages
 Number of stages and their functionality can be configured
 Functionality of stages is provided by plugins

Extensions on Proteus

Multiple published security architectures extending Proteus
 Capability Hardware Enhanced RISC Instructions (CHERI)
 CHERI-TrEE: Flexible enclaves on capability machines (EuroS&P ‘23)
 ProSpeCT: Provably Secure Speculation for the Constant-Time Policy

(USENIX Security ‘23)
 Architectural Mimicry (S&P ‘24)

We are also interested in working on non-security extensions!

val op = input(Data.ALU_OP)
switch(op) {
 is (AluOp.SUB) {
 result := src1 - src2
 }
}
when (input(Data.ALU_COMMIT_RESULT)) {
 output(pipeline.data.RD_DATA) := result
 output(pipeline.data.RD_DATA_VALID) := True
}

Plugins provide logic between pipeline registers (and across the pipeline):

References

SpinalHDL: https://github.com/SpinalHDL/SpinalHDL
VexRiscv: https://github.com/SpinalHDL/VexRiscv

This research was partially funded by the ORSHIN project
(Horizon Europe grant agreement No. 101070008).

https://github.com/proteus-core
https://mici.hu/papers/bognar23proteus.pdf
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/VexRiscv

	Slide 1

