
In-order pipeline + plugins

Orange plugin: arithmetic and logic unit, plugging into the execute stage
Blue plugin: branch predictor, plugging into the execute and fetch stages

Proteus: An Extensible RISC-V Core for
Hardware Extensions

Marton Bognar, Job Noorman, Frank Piessens

imec-DistriNet, KU Leuven, Belgium

marton.bognar@kuleuven.be

Proteus in a nutshell SpinalHDL

Out-of-order pipeline

Resources

Motivation:
 RISC-V provides an easy-to-extend ISA
 Proteus provides an easy-to-extend hardware implementation!

Main properties:
 Free and open-source RISC-V softcore
 Focus on extensibility, ease of development
 Written in SpinalHDL
 Plugin system inspired by VexRiscv
 RV32IM + Zicsr, passing the official RISC-V unit tests
 Includes a Newlib board support package

 Implements Tomasulo’s algorithm
 Textbook implementation
 Still close to real hardware

 Reuses many of the plugins used in the in-order pipeline
 Configurable in many settings

 Number of reorder buffer entries
 Number of reservation stations
 Types of execution units
 Branch prediction algorithm

 Domain-specific language embedded in Scala
 Provides a higher abstraction level compared to other HDLs
 Speeds up development

 Compiles to Verilog

GitHub organization: https://github.com/proteus-core

 Docker environment

 RISC-V unit tests

 Instructions for synthesis

 Newlib board support package

 Example code

 Extensions

Extended abstract: https://mici.hu/papers/bognar23proteus.pdf

The in-order pipeline consists of a sequence of stages
 Number of stages and their functionality can be configured
 Functionality of stages is provided by plugins

Extensions on Proteus

Multiple published security architectures extending Proteus
 Capability Hardware Enhanced RISC Instructions (CHERI)
 CHERI-TrEE: Flexible enclaves on capability machines (EuroS&P ‘23)
 ProSpeCT: Provably Secure Speculation for the Constant-Time Policy

(USENIX Security ‘23)
 Architectural Mimicry (S&P ‘24)

We are also interested in working on non-security extensions!

val op = input(Data.ALU_OP)
switch(op) {
 is (AluOp.SUB) {
 result := src1 - src2
 }
}
when (input(Data.ALU_COMMIT_RESULT)) {
 output(pipeline.data.RD_DATA) := result
 output(pipeline.data.RD_DATA_VALID) := True
}

Plugins provide logic between pipeline registers (and across the pipeline):

References

SpinalHDL: https://github.com/SpinalHDL/SpinalHDL
VexRiscv: https://github.com/SpinalHDL/VexRiscv

This research was partially funded by the ORSHIN project
(Horizon Europe grant agreement No. 101070008).

https://github.com/proteus-core
https://mici.hu/papers/bognar23proteus.pdf
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/VexRiscv

	Slide 1

