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ABSTRACT
When proposing new or extended hardware components for in-
tegrated circuits, it is common practice to evaluate the associated
hardware cost by synthesizing to an FPGA or ASIC and compare it
with related work. Ideally, these evaluation figures should provide
a reproducible and fair measure of the associated overhead.

In this paper, we focus on the field of systems security and study
published hardware designs and extensions of research processors.
Through a literature review, we find that many publications lack the
necessary details to conduct a fair re-evaluation. To demonstrate
how these omissions can result in significant differences in the
measured area metrics, we conduct an evaluation case study on
extensions proposed for a research processor. Finally, as a first step
towards more transparent and consistent evaluation results, we
propose a preliminary open-source evaluation toolchain based on
best practices from the field of cryptographic hardware. Our results
highlight the shortcomings in current evaluation techniques and
propose a way forward towardmore reproducible and fair hardware
cost estimation in systems security.

CCS CONCEPTS
• Hardware; • Security and privacy → Systems security; •
General and reference →Metrics;

KEYWORDS
Hardware Evaluation, Replicability

ACM Reference Format:
Jesse DeMeulemeester, QuintenNorga, Frank Piessens, Ingrid Verbauwhede,
and Marton Bognar. 2025. Hardware Cost Evaluation in Systems Security.
In ACM Conference on Reproducibility and Replicability (ACM REP ’25), July
29–31, 2025, Vancouver, BC, Canada. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3736731.3746155

1 INTRODUCTION
Quantifying efficiency and cost is essential when proposing, modify-
ing, or extending hardware designs. Two key dimensions by which
new designs are evaluated are performance (e.g., maximal clock
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frequency, latency, throughput) and hardware cost (e.g., lookup
tables (LUTs), flip flops (FFs), gate equivalent (GE)). To obtain these
metrics, the designs are synthesized to a field-programmable gate
array (FPGA) or application-specific integrated circuit (ASIC), pro-
viding figures that can be compared with the state-of-the-art. How-
ever, while evaluation metrics are important to gauge the merit of
the design, incorrect experimental setups can skew the results or
lead to misleading conclusions [7]. For this reason, it is important
to follow established evaluation practices and examine evaluation
setups when comparing with prior work.

This challenge is not unique to hardware designs. In computer
science, performance evaluations for software face a similar issue.
Measured performance can be affected by factors such as com-
piler version and optimization levels, the underlying hardware,
or the runtime environment. As a result, papers optimizing for
performance typically report compiler settings and the software
environment to ensure transparency and reproducibility. One rel-
ative advantage, however, is that the metric of interest is usually
unambiguous, typically wall-clock time or execution cycles.

The objectivity of hardware cost. In contrast, evaluating the “cost”
of hardware designs is considerably more complex and remains
an open challenge. Hardware designs are usually described using
hardware description languages (HDLs) and are then either simu-
lated, synthesized to an FPGA, or implemented as an ASIC. These
implementations can also be optimized for different objectives, such
as maximum clock frequency, area, or power consumption, which
will impact the other metrics. There even exist tools to discover
these different tradeoffs, further illustrating the inherent variability
and complexity of this process [5]. Prior work in cryptographic
hardware [1, 3] has already acknowledged that cost estimates can
vary significantly depending on factors such as the fabrication pro-
cess, the technology node, and even manufacturer requirements. In
essence, even when a hardware design is synthesized for the same
platform, comparing hardware costs remains non-trivial.

In this study, we focus on papers that use hardware cost as a
generic evaluation metric for a complex design, e.g., in addition to
a security proof or software runtime evaluations—papers typical
in systems security. Papers whose main contribution is the opti-
mization of a small hardware design for a given platform are out
of our scope and usually already use robust evaluation methods.
Our main goal is to survey how papers choose to evaluate their
hardware cost and how certain factors, such as differences in the
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target platforms and toolchains or omitted implementation details,
can lead to variable or unfair comparisons across different designs.

Systems security. In this paper, we focus on the field of systems
security, where proposing and implementing hardware changes is
a relatively recent phenomenon, partially driven by the emergence
of open-source CPU cores such as openMSP430 [6] and BOOM [12].
These cores enable security researchers to model and implement
countermeasures or extensions and obtain concrete estimates of
performance and hardware overhead. However, as such contribu-
tions become more prevalent, ensuring a rigorous methodology
becomes important to ensure fair and consistent evaluation.

We start with a literature analysis, comparing a flagship systems
security conference with a cryptographic hardware conference in
their practices for hardware cost evaluation, finding that papers in
the former often lack details necessary for the accurate reproduction
and comparison of results. We then experimentally demonstrate
in a case study how the omitted evaluation details can lead to
significant differences in the obtained evaluation results. Finally,
we encourage authors in systems security to apply lessons learned
in the hardware security community and showwith an open-source
workflow how these practices can be applied to our case study.

Contributions. In summary, our contributions are the following:
• We conduct a literature analysis comparing hardware cost
evaluation strategies across two research fields, showing
deficiencies in the reporting in systems security papers.

• We experimentally show that the evaluation details com-
municated in systems security for hardware cost are often
insufficient and can lead to unfair comparisons.

• We propose a uniform and transparent evaluation strategy
moving forward and release a preliminary open-source ASIC-
based toolchain to ease adoption.

Our data set and toolchain are archived at https://doi.org/10.
48804/WCDDKG. The latest version of the toolchain is available
at https://github.com/KULeuven-COSIC/eval-hd.

2 TRENDS IN THE LITERATURE
To understand current hardware evaluation practices in system
security research, we surveyed recent papers from USENIX Secu-
rity, a top-tier systems security conference. We compared these to
papers from the most recent edition of CHES, a well-established
hardware security conference with a longer history of evaluating
hardware designs. The goal is to identify common practices, high-
light differences in evaluation between the two research fields, and
identify best practices to ensure reproducible results.

Methodology. We manually identified all papers proposing new
hardware designs or extensions from the last five editions of USENIX
Security (2020-2024) and the most recent edition of CHES (2024)
by searching the proceedings for common keywords. We examined
each paper and corresponding repository where available, noting
the methodology of the evaluation, the details in the description of
the evaluation strategy, and the reported metrics. For each paper,
we recorded which implementation metrics were reported, both for
FPGA (LUT, FF, DSP, BRAM, critical path, etc.) and ASIC (GE/area,
critical path, etc.). Besides the raw metrics, we noted the extent
to which each paper details its implementation flow. In particular,

Table 1: Hardware implementation details reported by papers
at USENIX Security (2020–2024) and CHES (2024), including
FPGA- and ASIC-specific metrics where available. The table
indicates whether each category was fully specified ( ), par-
tially specified ( ), or not specified ( ).
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we tracked whether the paper specifies the toolchain used to syn-
thesize the design, the platform for which it was synthesized, and
the toolchain configuration. Here, we expect papers to report the
exact synthesis toolchain with version, specific FPGA or ASIC cell
library, optimization strategies, and any other relevant settings that
were used. Finally, we noted whether the papers re-synthesized
prior work using the same flow when comparing implementation
metrics and whether the authors released their hardware designs
as open source and participated in artifact evaluation.
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In total, we surveyed 35 papers: 14 presented at USENIX, and 21 at
CHES. These papers represent 0.9% of all USENIX and 21% of CHES
papers in these years, showing that CHES is a more established
venue for hardware modifications. Table 1 summarizes our results.

Reported metrics. In general, we saw that CHES papers more fre-
quently report ASIC implementation results (13/21), while USENIX
papers tend to use FPGA synthesis (only 4/14 reporting ASIC). Ad-
ditionally, among the papers including FPGA results, we noticed
that CHES papers tend to report a broader set of metrics on top of
the LUT and FF count typically included in USENIX papers.

Reproducibility. There are also systematic differences in report-
ing the evaluation metadata. Around 70% of CHES papers fully
specify the toolchain and target platform, compared to less than
half of USENIX papers. Additionally, 9/21 CHES papers describe
the toolchain configuration, compared to only one USENIX paper.

An important result from papers proposing or extending designs
is the comparison with previous state-of-the-art. To avoid unfair
comparisons, prior designs should be re-synthesized or evaluated
using the same toolchain and configuration. We found that most
papers from both conferences re-synthesize the designs they are
comparing to, or indicate that raw numbers are copied in case
the source is not available. However, we also found examples of
evaluations where the previous results were copied without notice,
which is problematic if synthesized for different FPGAs or cell
libraries. In Section 3, we will experimentally show how different
configurations can lead to greatly diverging comparison results.

Of course, re-evaluating the results from previous papers is only
possible when the designs are available as an open-source artifact.
While the majority of papers we surveyed did provide the source
code for their designs, a significant portion did not; we found that
USENIX papers were slightly more likely to include an artifact (71%)
compared to CHES (57%), and were also more likely to participate
in artifact evaluation (57% compared to only 19% for CHES).

Discussion. Our findings highlight the differences in evaluation
practices between systems security and cryptographic hardware
research. Notably, CHES papers target ASIC implementations more
often than USENIX papers, which, as we will point out in Section 4,
is a more suitable target because it suffers less variability compared
to FPGA synthesis. A second observation is that toolchain settings
are often underspecified, particularly in systems papers. In the next
section, we demonstrate how different toolchain configurations
can vastly change the implementation results. Finally, we observed
that USENIX papers more regularly open-source their designs and
participate in artifact evaluation, but observed no strong correlation
between this fact and the reported metrics. There is also no obvious
historical trend in the five years for these papers.

3 EXPERIMENTAL PROBLEM EXPOSITION
As highlighted in Section 2, systems security papers often omit
critical hardware cost evaluation details. In this section, we experi-
mentally demonstrate how FPGA synthesis-related options, such
as optimization strategies, can significantly influence the obtained
results, making it difficult to reproduce or fairly compare different
approaches. These optimization strategies are part of the synthesis
toolchains and enable hardware designers to tailor their designs for

Table 2: Synthesis results and extension overhead for various
optimization strategies (overhead for identical strategies).

Design LUTs (overhead) fmax [MHz] (change)

min avg max min avg max

ProSpeCT 19137 20524 21131 32.287 32.492 33.113
(12.7%) (16.2%) (19.7%) (-4.17%) (-0.95%) (+1.70%)

AMi-I 2847 3093 3197 58.483 58.888 60.017
(14.2%) (17.4%) (20.2%) (-3.27%) (-0.68%) (+2.26%)

AMi-O 19172 21110 22383 32.279 32.598 33.428
(16.0%) (21.5%) (26.5%) (-3.51%) (-0.48%) (+2.76%)

Libra 17613 20359 23104 26.752 27.067 27.880
(8.78%) (13.1%) (16.5%) (-3.81%) (-0.07%) (+2.52%)

different use cases. For example, Xilinx Vivado 2024.1, a popular
synthesis toolchain used for this case study, offers seven synthesis
and thirty implementation strategies, optimized for objectives such
as low area, low latency, or low runtime of the synthesis itself.

To illustrate the impact of these choices, we perform a case study
on extensions to an open-source RISC-V core, a practice common
in systems security such as microarchitectural attack and defense
research. We select the Proteus [2] core, which has served as the
basis for several top-tier systems security publications [4, 9, 10],
some of which were published or compared to in the papers we
previously analyzed. It is important to note that our aim is not to
scrutinize or judge the feasibility of these papers but rather to use
their hardware designs to showcase the importance of reproducible
evaluations and the problematic trends we identified in Section 2.

Methodology. We synthesized three Proteus extensions, targeting
the same FPGA (XC7A35TICSG324-1L) as the original papers, syn-
thesizing each design using all 210 strategy combinations. To ensure
consistency with the original work, we used the timing constraints
reported in the papers. We only report results that meet these con-
straints, but note that a significant number of strategy combinations
(between 29-65% for the different designs) failed them.

To compare the hardware cost of the proposed extensions to the
base core, we also synthesize the base core using the same strategies.
Since these extensions fork the base design at different versions,
re-synthesizing the correct version of the base core under the same
conditions is necessary to ensure a meaningful comparison.

Results. Table 2 summarizes the synthesis results in terms of
LUTs and maximal clock frequency for the different Proteus exten-
sions, while Appendix B contains further data on FFs and visualiza-
tions. These results show that LUT count is particularly sensitive
to the optimization strategy. For instance, the overhead in LUTs
for Libra nearly doubles when switching the synthesis strategy from
Flow_PerfOptimized_high to Flow_AreaMultThresholdDSP. The
flip-flop count and maximal clock frequency, on the other hand,
stay relatively constant across the different strategies. None of the
implementations used any DSPs or BRAM.

Discussion. These findings highlight the need for detailed re-
porting of FPGA synthesis settings. Such details are required to
ensure reproducible results and fair comparisons between different
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Table 3: Area and maximum frequency results with EVAL-HD.

Design Area (overhead) fmax (change)

ProSpeCT 0.219 mm2 (20.87%) 348 MHz (-9.4%)
AMi-I 0.045 mm2 (6.53%) 500 MHz (-1.1%)
AMi-O 0.199 mm2 (10.30%) 360 MHz (-6.3%)
Libra 0.244 mm2 (6.71%) 381 MHz (-0.0%)

designs. Note that this variability in results is not unique to Proteus
and its extensions, but rather stems from the configuration op-
tions in synthesis toolchains. Our results show that even when the
base and extended designs are synthesized using the same strategy,
the measured overhead can fluctuate significantly across different
strategies. This problem is exacerbated when results are copied and
may thus be synthesized using a different environment or optimiza-
tion settings. Figure 1 in Appendix B shows the distribution of LUT
counts for the extensions using different strategies, showing that
comparisons of measurements obtained with inconsistent strate-
gies can lead to very different—even negative—overhead numbers.
Addressing this issue requires detailed evaluation reporting and a
toolchain that minimizes variability in hardware cost evaluation.

4 AN OPEN-SOURCE EVALUATION STRATEGY
Hardware cost evaluation is inherently complex due to the large de-
sign space and variety of target platforms and technologies, while a
fair and meaningful cost comparison requires reproducible and con-
sistent results. As shown in Section 3, FPGA synthesis introduces
variability due to different optimization settings, making direct
comparisons across designs difficult. Furthermore, FPGA synthesis
commonly uses proprietary tools that are difficult to automate in a
continuous integration (CI) pipeline or an artifact evaluation script.

In this section, we propose an open-source toolflow, EVAL-HD,
inspired by the trends in the cryptographic hardware community.
EVAL-HD is a preliminary design, currently focusing on area and
critical path measurements, to enable and promote accessible and
fair evaluation and comparison of hardware designs in the future.
EVAL-HD builds on the open-source yosys ASIC synthesis frame-
work [11] and targets the widely-used, open-source nangate-45nm
cell library [8]. We note that it is extensible to other (open-source)
cell libraries and technology nodes. However, synthesizing different
designs for cost comparison should be done using identical synthe-
sis scripts, compilers, optimization settings, and cell libraries.

The area count is computed by mapping a synthesized netlist
to the desired technology and summing the area of cells as listed
in the targeted library. Compared to FPGA metrics (LUTs, FFs,
DSPs, BRAM, . . . ), which are further complicated by differences of
LUT technologies from different vendors and FPGA families, ASIC
synthesis enables vendor- and target-independent evaluation and
allows for a singular expression of area cost. This provides a more
accurate and easy-to-interpret representation of the real-world
cost when targeting a chip. Additionally, the critical path can be
determined via the delays between two registers in the synthesized
netlist. The delay for each cell is specified in the targeted cell library
and enables determining the maximal operating frequency.

Results. We used EVAL-HD (with yosys v0.51, nangate-45nm)
to re-synthesize all designs from Section 3, with the results shown
in Table 3. Notably, the ASIC area overhead for most designs [9, 10]
is lower than the FPGA overhead reported in the original papers.
In contrast, ProSpeCT [4] shows a higher area overhead.

Additionally, we determined the maximal operating frequency,
derived from the critical path, of all Proteus extensions and the
decrease from their baseline. Interestingly, for some designs [9, 10],
the critical path is not impacted by the countermeasure, and the
maximal operating frequency remains practically unchanged. How-
ever, other results [4, 10] divert from those claimed in the original
papers. This might be due to the different timing and routing mecha-
nisms inASIC compared to FPGAs, complicating direct comparisons
between the two and motivating further analysis.

Discussion and Future Work. While our toolflow reports the ASIC
area cost as area inmm2, an alternatemetric is GEs, which is defined
as the amount of 2-input NAND (NAND2) gates required to build
the circuit. We use the total area as the primary metric because
several tools, including yosys, do not support a direct computation
of GE. Moreover, these two metrics cannot be directly translated
into one another, making the area more accessible.

In future work, we envision our workflow to be extended with
other metrics used in the literature, such as power measurements.
Additionally, our goal is to integrate a wider variety of open-source
cell libraries in the automated toolflow.

5 CONCLUSION
Evaluating the cost of hardware designs in a reproducible and
comparable manner is challenging. In this work, we conducted a
literature analysis of the systems security and cryptographic hard-
ware communities to identify current practices in these fields. We
found that many papers omit crucial details, making the reproduc-
tion of results difficult. Additionally, we showed how the omission
of such details and the lack of a unified evaluation strategy can lead
to inconsistent and even unfair comparisons. To address these is-
sues, we propose a transparent, open-source toolflow for hardware
cost evaluation, using ASIC synthesis and standard cell libraries
to achieve more consistent results compared to FPGA synthesis.
We hope that our analysis and initial EVAL-HD toolflow can moti-
vate work towards more reproducible, rigorous, and transparent
hardware evaluations in systems security and beyond.
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A DATA AVAILABILITY
Our literature survey data set, the code of the designs used in Sec-
tions 3 and 4, the scripts to generate these results, and a snapshot of
the EVAL-HD tool is archived at https://doi.org/10.48804/WCDDKG.

Furthermore, we are continuing the development of the EVAL-HD
open-source toolflow based on yosys and the nangate-45nm cell
library at https://github.com/KULeuven-COSIC/eval-hd.

B DETAILED COMPARISON RESULTS
This section contains additional evaluation results and visualiza-
tions from the case study evaluation in Section 3. First, Table 4 con-
tains the flip-flop counts of the synthesized FPGA designs, showing
much less variability than the LUT counts from Table 2. Second, Fig-
ure 1 and Figure 2 show a visual representation of the distribution
of the obtained LUT and FF counts respectively for all optimization
strategies. These figures show that there is no overlap in the ob-
tained FF counts for the different extensions and their respective
baselines, while there is a much broader range of results for LUTs
with large overlaps.
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