
Proteus: An Extensible RISC-V Core for
Hardware Extensions

Marton Bognar1∗, Job Noorman1, Frank Piessens1

1imec-DistriNet, KU Leuven, 3001 Leuven, Belgium

Abstract

We present Proteus, an open-source RISC-V processor designed to allow rapid prototyping and evaluation
of hardware extensions. This goal of making it easy to extend the processor’s functionality and change its
microarchitecture is enabled by making Proteus configurable in many parameters and using a plugin system for
its functionality. Building on these plugins, Proteus features textbook implementations of an in-order and an
out-of-order pipeline. We implement Proteus in SpinalHDL, which generates Verilog code that can run in a
simulator or be synthesized to an FPGA, enabling rapid development and testing. This paper briefly introduces
the processor’s design and showcases hardware security extensions implemented on Proteus.

Introduction

RISC-V is an easily extensible instruction set architec-
ture with openly available hardware designs. These
properties make it a popular target for developing new
hardware extensions, either in the microarchitecture
or by extending the ISA and adding new instructions.

Our goal with creating and open-sourcing Proteus [1]
is to ease this development process via a RISC-V pro-
cessor focused on modularity and extensibility. Using
Proteus simplifies implementing and evaluating hard-
ware extensions and also enables a more straightfor-
ward comparison between them. The implementation
is written in SpinalHDL [2], a hardware description
language embedded in Scala, which speeds up the pro-
totyping process by simplifying the code compared to
lower-level implementations. SpinalHDL can generate
Verilog and VHDL code, which can run in a simulator
or be synthesized to an FPGA. Proteus also comes
with a Newlib implementation [3], which enables the
execution of existing C code, such as benchmark pro-
grams, on the processor after a recompilation step.

The processor features a textbook five-stage in-order
pipeline and a dynamic out-of-order pipeline with mul-
tiple execution units, both implementing the RV32IM
instruction set with CSR registers and correspond-
ing instructions. Most of the functionality in these
pipelines is implemented by (common) plugins, in-
spired by the plugin-based design of VexRiscv [4].

Description

In-order pipeline

The in-order pipeline consists of a sequence of stages,
with plugins providing the functionality in each stage

∗Corresponding author: marton.bognar@kuleuven.be

Fetcher Decoder

Reorder buffer

Reservation
station

EX

Load
buffer

Load
buffer

Instruction retirement

Reservation
station

EX

Reservation
station

EX

Common data bus

Figure 1: Schematic of the out-of-order pipeline.

by adding logic between its pipeline registers. The
number of stages is not fixed, and they can be re-
ordered as long as their dependencies are satisfied.
Proteus comes with a textbook five-stage implemen-
tation featuring fetch, decode, execute, memory, and
writeback stages. For instance, the fetch stage is im-
plemented by a single plugin (Fetcher), while the ex-
ecute stage includes logic from multiple plugins, such
as arithmetic shifting or address calculation. The ‘M’
(multiplication and division) and ‘Zicsr’ (control and
status registers) RISC-V standard extensions are im-
plemented as plugins that can optionally be included
in the design – also in the out-of-order pipeline.

Out-of-order pipeline

The out-of-order pipeline implementation is based on
Tomasulo’s algorithm as described by Hennessy and
Patterson [5]. Figure 1 shows a schematic view of the

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:marton.bognar@kuleuven.be


design. After fetching and decoding, instructions are
placed into the reorder buffer (ROB), which dispatches
them to reservation stations. These reservation sta-
tions resolve instruction dependencies through register
rewriting, execute instructions in an execution unit
(EX), and broadcast this result on the common data
bus. After a reservation station calculates the tar-
get address of a load operation, it forwards this to a
load buffer, which connects to the memory bus. All
reservation stations and load buffers can execute in
parallel. When instructions are marked as ready in
the ROB, they are retired in program order; register
writes and memory stores are committed in this final
retirement stage. The functionality of the first two
pipeline stages, the execution units, the load buffers,
and the retirement stage is provided by plugins that
are also used in the in-order pipeline, showing the
flexibility and reusability of the plugin architecture.

The out-of-order design is configurable by the num-
ber and type of execution units, load buffers, and
ROB entries. It also features a branch target predictor
with a configurable replacement policy. The paral-
lelism and the branch predictor make this design more
similar to higher-end microarchitectures, enabling the
development of extensions for more complex systems.

Synthesis

Proteus uses an AXI4 memory bus, making it ideal
both for simulation with software-defined memory and
for synthesis to an FPGA with a connected memory
module. FPGA synthesis also provides information
about the impact of modifications and extensions on
the hardware’s area, power usage, and critical path.
Table 1 summarizes these parameters when synthe-
sizing the base in-order and out-of-order pipelines for
an Artix-7 XC7A35TI board. The configuration for
the latter contains 16 ROB entries, 5 execution units,
and 3 load buffers. Proteus (including extensions) has
been flashed to multiple physical FPGA boards: a
Zynq UltraScale+ XCZU9EG and an Arty A7-35T
XC7A35TICSG324-1L [6].

Design LUTs FFs CP Dynamic power
In-order 2,903 1,972 19.6 ns 15 mW
Out-of-order 16,775 11,913 29.5 ns 52 mW

Table 1: Synthesis results for the two pipelines.

Extensions

This section briefly introduces hardware extensions
that have been implemented on Proteus. While these
are all security extensions, we believe that the extensi-
bility of Proteus is not limited to security.

CHERI

Capability Hardware Enhanced RISC Instructions [7]
(CHERI) add support for hardware capabilities that
enable fine-grained access control in the processor.

A version of the in-order pipeline has been extended
to add support for most of version 8 of the 32-bit
CHERI-RISC-V specification (without compressed ca-
pabilities), including storing capabilities in the register
file and implicit memory access [6].

CHERI-TrEE

CHERI-TrEE [6] combines the CHERI capabilities
with enclaved execution in one design. It implements
an advanced form of enclaved execution by building on
primitives provided by CHERI, extending the provided
mechanisms where necessary.

ProSpeCT

ProSpeCT [8] is a defense against all known Spectre
attack variants with a formally proven design. This
prototype has been implemented on the out-of-order
pipeline, as Spectre attacks generally require out-of-
order and speculative execution. ProSpeCT requires
no additions or changes to the ISA except adding
new CSR registers to store the boundaries of memory
marked as containing secret data. This secret data is
tracked through the hardware, ensuring that it does
not leak during speculative execution.

References

[1] Proteus developers. Proteus: a configurable RISC-V core.
https://github.com/proteus-core/proteus.

[2] Charles Papon. SpinalHDL: Scala based HDL. https://
github.com/SpinalHDL/SpinalHDL.

[3] Proteus developers. Newlib: stdlib implementation for Pro-
teus. https://github.com/proteus-core/newlib.

[4] Charles Papon. VexRiscv: A FPGA friendly 32 bit RISC-
V CPU implementation. https://github.com/SpinalHDL/
VexRiscv.

[5] John L. Hennessy and David A. Patterson. Computer
Architecture, Fourth Edition: A Quantitative Approach.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2006. isbn: 0123704901.

[6] Thomas Van Strydonck et al. “CHERI-TrEE: Flexible en-
claves on capability machines”. In: EuroS&P - 8th IEEE
European Symposium on Security and Privacy. IEEE,
2023.

[7] Robert N.M. Watson et al. “CHERI: A Hybrid Capability-
System Architecture for Scalable Software Compartmen-
talization”. In: 2015 IEEE Symposium on Security and
Privacy. 2015, pp. 20–37. doi: 10.1109/SP.2015.9.

[8] Lesly-Ann Daniel et al. “ProSpeCT: Provably Secure Spec-
ulation for the Constant-Time Policy”. In: 32nd USENIX
Security Symposium (USENIX Security 23). Aug. 2023.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://github.com/proteus-core/proteus
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/SpinalHDL
https://github.com/proteus-core/newlib
https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv
https://doi.org/10.1109/SP.2015.9

	Introduction
	Description
	In-order pipeline
	Out-of-order pipeline

	Synthesis
	Extensions
	CHERI
	CHERI-TrEE
	ProSpeCT


